PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High-Velocity Impact of 2-Phase WC/Co Composite Plate - Beginning of the Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
2-phase composites are often used for high demanding parts that can undergo impact loads. However, most of the papers on dynamic loading concerns layered composites. In our opinion, the impact loads are not considered thoroughly enough. Good examples of 2-phase composites are: (1) a WC/Co cermet or (2) a monolithic ceramic Al2 O3 /ZrO2 . The WC/Co cermet is often modelled as having ductile elasto-plastic Co matrix and ideally elastic WC grains. It is because of very high crushing resistivity of the WC. In this paper, we present an extension to earlier elaborated models ([44]) with the assumption of ideal elasticity of the grains. The new and general numerical model for high-velocity impact of the 2-phase composites is proposed. The idea of this novelty relies on the introduction of crushability of grains in the composite and thermo-mechanical coupling. The model allows for description of the dynamic response both composite polycrystals made of: (1) 2 different purely elastic phases (e.g. Al2 O3 /ZrO2 ) or (2) one elastic phase and the second one plastic (e.g. cermet WC/Co), or (3) 2 elasto-plastic phases with different material properties and damage processes. In particular, the analysis was limited to the cases (2) and (3), i.e. we investigated the WC/Co polycrystal that impacted a rigid wall with the initial velocity equal to 50 m/s.
Twórcy
autor
  • Institute of Fundamental Technological Research PAN, 5B Pawińskiego Str., 02-106 Warszawa, Poland
autor
  • Lublin University of Technology, 40 Nadbystrzycka Str., 20-618 Lublin, Poland
Bibliografia
  • [1] R. W. Rice. Porosity of ceramics. New York: Marcel Dekker Inc. 1998.
  • [2] T. Fett, D. Munz, Mechanical Properties, Failure Behaviour, Materials Selection, Ceramics. Berlin, Heidelberg, New York: Springer 1999.
  • [3] L. A. Gömze, L. N. Gömze, Ĕpitöanyag - J. Silicate Based Comp. Mater. 61, 38-42 (2009).
  • [4] T. Sadowski, S. Samborski, J. Am. Cer. Soc. 86, 2218-2221 (2003).
  • [5] L. A. Gömze, L. N. Gömze, IOP Conf. Ser.: Mater. Sci. Eng. 47012033
  • [6] T. Sadowski, Mech. Mater. 18, 1-16 (1994).
  • [7] H. D. Espinoza, P. D. Zavatteri, Mech. Mater. 35, 333-364 (2003).
  • [8] H. D. Espinoza, P. D. Zavatteri, Mech. Mater. 35, 365-394 (2003).
  • [9] L. Marsavina, T. Sadowski, Int. J. Fract. 145, 237-243 (2007).
  • [10] T. Sadowski, L. Marsavina, Comput. Mater. Sci. 6, 209-211 (2009).
  • [11] T. Sadowski, Comput. Mater. Sci. 64, 209-211 (2012).
  • [12] T. Sadowski, S. Samborski, Comput. Mater. Sci. 43, 75-81 (2008).
  • [13] D. Ghosh, M. Banda, S. Akurati, H. Kang, O. Fakharizadeh, Scripta Mater. 138, 139-144 (2017).
  • [14] T. Sadowski, B. Pankowski, Comp. Struct. 143, 388-394 (2016).
  • [15] T. Sadowski, J. Bęc, Comput. Mater. Sci. 50, 1269-1275 (2011).
  • [16] M. Winter, Nanocrystalline ceramics, synthesis and structure. Berlin: Springer 2002.
  • [17] C. C. Koch, I. A. Ovid’ko, S. Seal, S. Veprek, Structural nanocrystalline materials: fundamentals and applications. Cambridge: Cambridge Univ. Press; 2007.
  • [18] S. Suresh, A. Mortensen, Fundamentals of functionally graded materials. Cambridge: The University Press; 1998.
  • [19] T. Sadowski, A. Neubrand, Int. J. Fracture 127, 135-140 (2004).
  • [20] T. Sadowski, S. Ataya, K. Nakonieczny, Comput. Mat. Sci. 45, 624-632 (2009).
  • [21] M. Birsan, T. Sadowski, L. Marsavina, D. Pietras, Int. J. Solids Struct. 50, 519-530 (2013).
  • [22] T. Sadowski, P. Golewski, Comput. Mater. Sci. 52, 293-297 (2012).
  • [23] T. Sadowski, P. Golewski, Comput. Mater. Sci. 64, 285-288 (2012).
  • [24] V. Burlaynko, H. Altenbach, T. Sadowski, S. D. Dimitrova, Comput. Mat. Sci. 116, 11-21 (2016).
  • [25] J. Gajewski, T. Sadowski, Comput. Mat. Sci. 82, 114-117 (2014).
  • [26] L. S. Siegl, H. E. Exner, Metall. Trans. A 18A, 1299-1308 (1987).
  • [27] L. S. Siegl, H. F. Fischmester, Acta Metall. 36, 887-897 (1988).
  • [28] K. S. Ravichandran, Acta Metall. Mater. 42, 143-150 (1994).
  • [29] S. Hönle, S. Schmauder, Comput. Mater. Sci. 13, 56-60 (1998).
  • [30] F. Felten, G. Schneider, T. Sadowski, Int. J. Ref. Mat. Hard. Mat. 26, 55-60 (2008).
  • [31] W. Li, H. Wang, L. Wang, C. Hou, X. Song, X. Liu, X. Han, Mater. Res. Letters 5, 55-60 (2017).
  • [32] E. Postek, T. Sadowski, Comp. Interfaces 18, 57-76 (2011).
  • [33] H. Dębski, T. Sadowski, Comput. Mater. Sci. 83, 403-411 (2014).
  • [34] P. Robinson, E. Greenhalgh, S. Pinho, Failure Mechanisms in Polymer Matrix Composites, Woodhead Publishing; 2012.
  • [35] T. Sadowski, P. Golewski, M. Kneć, Comp. Struct. 122, 66-77 (2014).
  • [36] T. Sadowski, E. M. Craciun, A. Rabaea, L. Marsavina, Meccanica 51, 329-339 (2016)
  • [37] P. Wolszczak, T. Sadowski, S. Samborski, Comp. Part B 129, 66-76 (2017)
  • [38] L. Krüger, K. Mandel, R. Krause, M. Radajewski, Int. J. Refract. Met. Hard. Mater. 51, 324 (2015).
  • [39] Z. Q. Huang, L. Gang, Eng Fail Anal. 80, 273 (2017).
  • [40] L. Kärger, J. Baaran, A. Gunn, R. Thomson, Comp. Part B. 40, 71 (2009).
  • [41] T. P. Vo, Z. W. Guan, W. J. Cantwell, G. K. Schleyer. Comp. Part B. 44, 141 (2013).
  • [42] E. Postek, T. Sadowski, Comp. Struct. 203, 498 (2018).
  • [43] E. Postek, T. Sadowski, Int. J. Refract. Met. Hard Mats. 77, 68, (2018).
  • [44] T. Sadowski, S. J. Hardy, E. Postek, Mater. Sci. Eng. A. 424, 230 (2006).
  • [45] G. R. Johnson, W. H. Cook, Eng. Fract. Mech. 21, 31 (1985).
  • [46] Abaqus 6.13. User’s Manual. http://dsk.ippt.pan.pl/docs/abaqus/v6.13/index.html
  • [47] MSC Patran http://www.mscsoftware.com/product/patran
  • [48] GiD http://www.gidhome.com/
  • [49] R. J. Hickman, J. L. Wise, J. A. Smith, J. P. Mersh, C. V. Robino, J. G. Arguello, in: AIP Conference Proceedings 1793, 100018 (2017).
  • [50] T. J. Holmquist, G. R. Johnson, W. A. Gooch, WIT Transactions on Modelling and Simulation 40, 61, 2005
  • [51] E. Postek, T. Sadowski, in: K. Wiśniewski, T. Burczyński (Eds), 41st Solid Mechanics Conference, Book of Abstracts, 106-107 (2018) Warszawa (PL).
  • [52] E. Postek, T. Sadowski, Impact models of two-phase composites, Advanced Materials Congress, 10-13 June 2019, Stockholm, Sweden - keynote lecture - accepted.
  • [53] J. Rojek, E. Onate, E. Postek, J. Mater. Process. Tech. 80-81, 620, 1998.
  • [54] J. Rojek, O. C. Zienkiewicz, E. Onate, E. Postek, J. Mater. Process Tech. 119, 41, 2007.
Uwagi
EN
This work was financially supported by National Science Centre (Poland) project No 2016/21/B/ST8/01027 (Lublin University of Technology). Calculations are perfomed at the Interdisciplinary Centre for Mathematical and Computational Modelling in the University of Warsaw and at the Tricity Academic Supercomputer Centre in Gdańsk, Poland.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96431e5a-ec23-43ab-80bb-0e8cf63160ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.