Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this study is to compare the corrosion resistance of X37CrMoV5-l tool steel after nanostructurization and after a conventional heat treatment. The nanostructuring treatment consisted of austempering at 300°C, which produced a microstructure composed of nanometric carbide-free bainite separated by nanometric layers of retained austenite. The retained austenite occurred also in form of blocks which partially undergo martensitic transformation during final cooling. For comparison, a series of steel samples were subjected to a standard quenching and high tempering treatment, which produced a microstructure of tempered martensite. The obtained results showed that the corrosion resistance of steel after both variants of heat treatment is similar. The results indicate that the nanocrystalline structure with high density of intercrystalline boundaries do not deteriorate the corrosion resistance of steel, which depends to a greater extent on its phase composition.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
133--140
Opis fizyczny
Bibliogr. 34 poz., fot., rys., tab., wzory
Twórcy
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland
Bibliografia
- [1] H. K. D. H. Bhadeshia, Sci. Technol. Adv. Mater. 14, 1-7 (2013), doi: 10.1088/1468-6996/14/1/014202
- [2] F. G. Caballero, S. Allain, J. Cornide, J. D. Puerta Velásquez, C. Garcia-Mateo, M. K. Miller, Materials and Design 49, 667-680 (2013), doi: 10.1016/j.matdes.2013.02.046
- [3] C. Garcıa-Mateo, F. G. Caballero, Materials Transactions 46, 8, 1839-1846 (2005), https://doi.org/10.2320/matertrans.46.1839.
- [4] H. K. D. H. Bhadeshia, Proc. R. Soc. A 466, 3-18 (2010) https://doi.org/10.1098/rspa.2009.0407.
- [5] H. K. D. H. Bhadeshia, Mater. Sci. Eng. A481-482, 36-39 (2008), doi: 10.1016/j.msea.2006.11.181.
- [6] B. C. De Cooman, Current Opinion in Solid State and Materials Science 8, 285-303 (2004), doi: 10.1016/j.cossms.2004.10.002.
- [7] L. C. Chang, H. K. D. H. Bhadeshia, Materials Science and Technology 11, 874 (1995), http://dx.doi.org/10.1179/mst.1995.11.9.874.
- [8] E. Kus, Z. Lee, S. Nutt, F. Mansfeld, Corrosion 62, 152-161 (2006), doi: 10.5006/1.3278260.
- [9] G. R. Argade, S. K. Panigrahi, R. S. Mishra, Corrosion Science 58, 145-151 (2012), doi: 10.1016/j.corsci.2012.01.021.
- [10] A. Dischino, J. M. Kenny, Journal of Materials Science Letters 21, 1631-1634 (2002), doi: 10.1023/A:1020338103964.
- [11] R. Mishra, R. Balasubramaniam, Corrosion Science 46, 3019-3029 (2004), doi: 10.1016/j.corsci.2004.04.007.
- [12] H. Garbacz, M. Pisarek, K. J. Kurzydłowski, Biomolecular Engineering 24, 559-563 (2007), doi: 10.1016/j.bioeng.2007.08.007.
- [13] E. S. M. Sherif, A. H. Seikh, International Journal of Electrochemical Science 7, 7567-7578 (2012).
- [14] B. Hadzimaa, M. Janeček, Y. Estrin, H. S. Kim, Materials Science and Engineering A 462, 243-247 (2007), doi: 10.1016/j.msea.2005.11.081.
- [15] W. Zeiger, M. Schneider, D. Scharnweber, H. Worth, NanoStructured Materials 6, 1013-1016 (1995).
- [16] K. D. Ralston, N. Birbilis, C. H. J. Davies, Scripta Materialia 63, 1201-1204 (2010), doi: 10.1016/j.scriptamat.2010.08.035.
- [17] O. Kazum, M. Bobby Kannan, H. Beladi, I. B. Timokhina, P. D. Hodgson, S. Khoddam, Materials and Design 54, 67-71 (2014), doi: 10.1016/j.matdes.2013.08.015.
- [18] E. Skołek, K. Dudzińska, J. Kamiński, W. Świątnicki, Archives of Metallurgy and Materials 60, 503-509 (2015), doi: 10.1515/amm-2015-0081.
- [19] E. Skołek, Sz. Marciniak, P. Skoczylas, J. Kamiński W. Świątnicki, Archives of Metallurgy and Materials 60, 491-496 (2015), doi: 10.1515/amm-2015-0079.
- [20] J. Yang, Y. Lu, Z. Guo, J. Gu, C. Gu, Corrosion Science 130, 64-75 (2018), http://dx.doi.org/10.1016/j.corsci.2017.10.027.
- [21] O. D. Sherby, J. Wadsworth, D. R. Lesuer, C. K. Syn, Materials Transactions 49, 201-2027 (2008).
- [22] L. Cheng, A. Böttger, Th. H. de Keijser, E. J. Mittemeijer, Scripta Metallurgica et Materialia 24, 509-514 (1990), https://doi.org/10.1016/0956-716X(90)90192-J.
- [23] https://atlas-sollich.pl/produkt/atlaslab-software/?lang=en.
- [24] ASTM G31, Standard Practice for Laboratory Immersion Corrosion Testing of Metals.
- [25] PN-H-04608:1978, Korozja metali - Skala odporności metali na korozję - Polish version.
- [26] M. Oka, H. Okamoto, Metallurgical and Materials Transactions A 19A, 447-452 (1988).
- [27] T. Z. Wozniak, Archives of Foundry Engineering 10, 89-94 (2010).
- [28] K. D. Ralston, N. Birbilis, Corrosion 66 (2010) 075005-075005-13, https://doi.org/10.5006/1.3462912.
- [29] C. H. Hsu, M. L. Chen, Corrosion Science 52, 2945-2949 (2010), doi: 10.1016/j.corsci.2010.05.006.
- [30] H. Krawiec, J. Lelito, E. Tyrała, J. Banaś, J. Solid State Electrochem. 13, 935-942 (2009), doi: 10.1007/s10008-008-0636-x.
- [31] C. A. Della Rovere, F. S. Santos, R. Silva, C.A.C. Souza, S. E. Kuri, Corrosion Science 68, 84-90 (2013), doi: 10.1016/j.corsci.2012.10.038.
- [32] D. Y. Kobayashi, S. Wolynec, Materials Research 2, 239-247 (1999), http://dx.doi.org/10.1590/S1516-14391999000400002.
- [33] M. Femenia, J. Pan, C. Leygraf, Journal of The Electrochemical Society 151 (2004), B581-B585, doi: 10.1149/1.1796447.
- [34] K. Wasiluk, E. Skołek, J. Kamiński, W. Świątnicki, 22nd International Conference on Materials and Technology 20-22 October 2014, Portoroz, Slovenia.
Uwagi
EN
1. The results presented in this paper have been obtained within the project “Production of nanocrystalline steels using phase transformations” - NANOSTAL (contract no. POIG 01.01.02-14-100/09 with the Polish Ministry of Science and Higher Education). The project is co-financed by the European Union from the European Regional Development Fund within Operational Programme Innovative Economy 2007-2013.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96414385-9435-4941-a4b6-c51a1c53fe34