PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Joining the High-Strength Steel Sheets Used in Car Body Production

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, there are several important reasons for using high-strength sheets in the manufacturing of car bodies. Car manufacturers choose the steel with good formability, fatigue resistance and ability to absorb impact energy. Microalloyed steels and dual-phase steels are the materials which fulfil the above-mentioned criteria. The application of high-strength sheets has led to the development of new materials joining techniques. Mechanical joining, such as clinching, is the innovative technique to join these progressive materials. Materials of different thicknesses can be joined by clinching. The paper focuses on the comparison of the properties of the joints made by clinching and resistance spot welding. The application of resistance spot welding is still the most used joining method in car body production. These properties were investigated by tensile test and metallographic observation. The HCT600X+ZF, HCT600X+Z and HX420LAD+Z steel sheets were used for the experiments. The results of tensile test show that the values of load-bearing capacity of clinched joints reached from 3900 N to 5900 N and the resistance spot welded joints reached the values of load-bearing capacity from 12000 N to 19500 N. In comparison to the resistance spot welded joints, the clinched joints reached from 32 to 48% of load-bearing capacity.
Twórcy
  • Technical University of Košice, Faculty of Mechanical Engineering, Department of Technology, Materials and Computer Support of Production, Letná 9, 042 00 Košice, Slovakia
autor
  • Technical University of Košice, Faculty of Mechanical Engineering, Department of Technology, Materials and Computer Support of Production, Letná 9, 042 00 Košice, Slovakia
  • Technical University of Košice, Faculty of Mechanical Engineering, Department of Technology, Materials and Computer Support of Production, Letná 9, 042 00 Košice, Slovakia
autor
  • Technical University of Košice, Faculty of Mechanical Engineering, Department of Technology, Materials and Computer Support of Production, Letná 9, 042 00 Košice, Slovakia
Bibliografia
  • 1. Adamczyk J., Grajcar A. Structure and mechanical properties of DP-type and TRIP-type sheets obtained after the thermomechanical processing. Journal of Materials Processing Technology. 2005; 162–163: 267–274.
  • 2. Bleck W. Cold-rolled, high-strength sheet steels for auto application. Journal of Metals. 1996; 7: 26–30.
  • 3. Durrenberger L., Lemoine X., Molinari A. Effects of pre-strain and bake-hardening on the crash properties of a top-hat section. Journal of Materials Processing Technology.2011; 211(12): 1937–1947.
  • 4. Fischer F.D., Reisner G., Werner E., Tanaka K., Cailletaud G., Antretter T. A new view on transformation induced plasticity (TRIP). International Journal of Plasticity. 2000; 16(7–8): 723–748.
  • 5. Wang W., Li M., He. Ch., Wei X., Wang D., Du H. Experimental study on high strain rate behavior of high strength 600–1000 MPa dual phase steels and 1200 MPa fully martensitic steels. Materials & Design. 2013; 47: 510–521.
  • 6. Kuziak R., Kawalla R., Waengler S. Advanced high strength steels for automotive industry. Archives of Civil and Mechanical Engineering. 2008; 8(2): 103–117.
  • 7. Mucha J., Kaščák Ľ., Spišák E. Joining the car-body sheets using clinching process with various thickness and mechanical property arrangements. Archives of Civil and Mechanical Engineering. 2011; 11(1): 135–148.
  • 8. Sarwar M., Priestner R. Influence of ferrite-martensite microstructural morphology on tensile properties of dual-phase steel. Journal of materials science. 1996; 31: 2091–2095.
  • 9. Dewi H.S., Fischer A., Volpp J., Niendorf T., Kaplan A.F.H. Microstructure and mechanical properties of laser surface treated 44MnSiVS6 microalloyed steel. Optics and Laser Technology journal. 2020; 127: 106139.
  • 10. Singh A.P., Pant G. Mechanical behaviour of vanadium microalloyed steel under control environment compression. Materials Today: Proceedings. 2020; 26(2): 2525–2527.
  • 11. Gorni A.A., Mei P.R. Austenite transformation and age hardening of HSLA-80 and ULCB steels. Journal of Materials Processing Technology. 2004; 155–156: 1513–1518.
  • 12. Show B.K., Veerababu R., Balamuralikrishnan R., Malakondaiah G. Effect of vanadium and titanium modification on the microstructure and mechanical properties of a microalloyed HSLA steel. Materials Science and Engineering. 2010; 527: 1595–1604.
  • 13. Spišák E., Kaščák Ľ., Viňáš J. Research into properties of joints of combined materials made by resistance spot welding. Chemické listy.2011; 105(16): 488–490.
  • 14. Xing B., Xiao Y., Qin Q.H. Characteristics of shunting effect in resistance spot welding in mild steel based on electrode displacement. Measurement. 2018; 115: 233–242.
  • 15. Deng L., Li Y.B., Carlson B.E., Sigler D.R. Effects of electrode surface topography on aluminum resistance spot welding. Welding Journal. 2018; 97(4): 120–132.
  • 16. Xia Y., Su Z., Li Y., Zhou L., Shen Y. Online quantitative evaluation of expulsion in resistance spot welding. Journal of Manufacturing Processes. 2019; 46: 34–43.
  • 17. Huang M., Zhang Q., Qi L., Deng L., Li Y. Effect of external magnetic field on resistance spot welding of aluminium alloy AA6061-T6. Journal of Manufacturing Processes. 2020; 50: 456–466.
  • 18. Lambiase F., Di Ilio A. Finite element analysis of material flow in mechanical clinching with extensible dies. Journal of Materials Engineering and Performance. 2013; 22(6): 1629–1636.
  • 19. Chen C., Zhang H., Peng H., Ran X., Pan Q. Investigation of the restored joint for aluminum alloy. Metals. 2020; 10(1): 97.
  • 20. Lambiase F. Influence of process parameters in mechanical clinching with extensible dies. The International Journal of Advanced Manufacturing Technology. 2013; 66: 2123–2131.
  • 21. Chen C., Ran X., Pan Q., Zhang H., Yi R., Han X. Research on the mechanical properties of repaired clinched joints with different forces. Thin-Walled Structures. 2020; 152: 106752.
  • 22. Shi C., Yi R., Chen C., Peng H., Ran X., Zhao S. Forming mechanism of the repairing process on clinched joint. Journal of Manufacturing Processes. 2020;50:329–335.
  • 23. He J., Lian J., Aretz A., Vajragupta N., Hangen U., Goodwin F., Münstermann S. Fracture properties of zinc coating layers in a galvannealed steel and an electrolytically galvanized steel. Materials Science & Engineering: A. 2018; 732: 320–325.
  • 24. Atia M.K.S., Jain M.K. Die-less clinching process and joint strength of AA7075 aluminum joints. Thin-Walled Structures. 2017; 120: 421–431.
  • 25. Kaščák Ľ., Spišák E., Kubík R., Mucha J. Finite element calculation of clinching with rigid die of three steel sheets. Strength of Materials. 2017; 49 (4): 488–499.
  • 26. Viňáš J., Kaščák Ľ., Greš M. Optimization of resistance spot welding parameters for microalloyed steel sheets. Open Engineering. 2016;6(1):504–510.
  • 27. Kaščák Ľ., Mucha J., Witkowski W. Plastic Formed and Spot Welded Joints Strength of S350GD+Z Steel. Tehnički vjesnik. 2018; 25(6): 1623–1630.
  • 28. Zhang H., Senkara J. Resistance welding: Fundamentals and Applications. Taylor and Francis; 2006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-963c9861-0bde-4594-86d1-4f76b0f1b9b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.