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Abstract: In this paper we have factorized matrix polynomials
into a complete set of spectral factors using a new design algorithm,
and with some systematic procedures a complete set of block roots
(solvents) have been obtained. The newly developed procedure is
just an extension of the (scalar) Horner method to its block form for
use in the computation of the block roots of matrix polynomial, the
block-Horner method bringing a local iterative nature, faster conver-
gence, nested programmable scheme, needless of any prior knowledge
of the matrix polynomial, with the only one inconvenience, which is
the strong dependence on the initial guess. In order to avoid this
trap, we proposed a combination of two computational procedures,
for which the complete program starts with the right block-Q.D.
algorithm. It is then followed by a refinement of the right factor
by block-Horner’s algorithm. This results in the global nature of
the program, which is faster in execution, has well defined initial
conditions, and good convergence in much less time.

Keywords: block roots, solvents, spectral factors, block-Q.D.
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1. Introduction

In the early days of control and system theory, frequency domain techniques were
the principal tools of analysis, modeling and design for linear systems. How-
ever, it is the dynamic systems that can be modeled by a scalar mth order linear
differential (difference) equation with constant coefficients that are amenable to
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this type of analysis, see DiStefano, Stubberud and Williams (1967) and Go-
hberg, Lancaster and Rodman (1982). These systems have a single input and a
single output (SISO). In this case, the transfer function is a ratio of two scalar
polynomials. The dynamic properties of the system (time response, stability,
etc.) depend on the roots of the denominator, or, in other words, on the solu-
tion of the underlying homogeneous differential equation (difference equation),
see Yaici and Hariche (2014). The denominator of such a system is a scalar
polynomial and its spectral characteristics depend on the location of its roots
in the s-plane, hence the factorization (root finding) of scalar polynomials is an
important tool of analysis and design for linear systems, see Dahimene (2009).
But for the systems that have multiple inputs and multiple outputs (MIMO),
the dynamics can be modeled by high-degree coupled differential equations or
lth degree mth order vector linear differential (difference) equation with matrix
of constant coefficients, which can be considered as an extension to the scalar
case, and then resulting in matrix transfer function. When one studies high
order MIMO systems, the size of the matrices involved becomes prohibitive.
This is why there is a reappearance nowadays of transfer function (which be-
come rational matrices) description, see Chen (1984), Kailath (1980) or Kucera
(1979). In this context, the dynamic properties of the system under study are
determined by the latent roots and /or the spectral factors of a matrix poly-
nomial. This is why we find quite a lot of publications, associated with those
matrices in system and control journals, as this is exemplified by the studies od
Ahn (1982), Resende and Kaskurewicz (1989), Shieh and Solak (1987).

The algebraic theory of matrix polynomials has been investigated by Den-
nis, Traub and Weber (1976), Denman (1977), Denman and Beavers (1976),
Gohberg, Kaashoek and Rodman (1978), Shieh and Chahin (1981), Shieh and
Tsay (1981), and Tsai, Shieh and Shen (1988). Various computational algo-
rithms (see Dennis, Traub and Weber, 1976; Denman and Beavers, 1976; Go-
hberg, Kaashoek and Rodman, 1978; Shieh and Chahin, 1981, Shieh and Tsay,
1984) are available for finding the solvents and spectral factors of a matrix poly-
nomial. A very well-known method and approach (Dennis, Traub and Weber,
1976, 1978; Shieh, Chang and McInnis, 1986) is the use of the eigenvalues and
eigenvectors of the block companion form matrix that can be constructed from
the matrix polynomial (the λ-matrices) to construct the solvents of the matrix
polynomial based upon the definition of solvents.

Still, it is often inefficient to explicitly determine the eigenvalues and eigen-
vectors of a matrix, which can be ill conditioned and either non-defective or
defective. On the other hand, yet without prior knowledge of the eigenval-
ues and eigenvectors of the matrix, the Newton-Raphson method (Shieh and
Chahin, 1981; Shieh, Tsay and Coleman, 1981) has been successfully utilized
for finding the solvents. Also, the block-power method has been developed by
Tsai, Shieh and Shen (1988) for finding the solvents and spectral factors of a
general nonsingular polynomial matrix, which may be monic and/or comonic.
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However, the matrix polynomial of interest must have distinct block solvents,
and the convergence rate of the power method depends strongly on the ratio
of the two block eigenvalues of largest magnitude, see Shieh and Tsay (1982).
Moreover, there are quite some numerical methods for computing the block
roots of matrix polynomials without any prior knowledge of the eigenvalues and
eigenvectors of the matrix polynomial. Of such sophisticated algorithms, the
most efficient and satisfactorily stable one that gives the complete set of solvents
at the same time is the Q.D. algorithm. The use of the Q.D. algorithm for
such purpose has been suggested by K. Hariche (1987), and has been briefly
detailed, studied and extended to the matrix polynomials by Dahimene (2009).

The purpose of this paper is, first, to briefly illustrate the so called block
quotient-difference (Q.D.) algorithm as developed by Dahimene (2009) and,
secondly, to extend the (scalar) Horner method to its block form for use in the
computation of the block roots of matrix polynomial and the determination of
the complete set of solvents and spectral factors of a monic polynomial. With-
out any prior knowledge of the eigenvalues and eigenvectors of the matrix, to
mention the scalar case, one can refer to A. Pathan and T. Collyer (2003), who
present an excellent survey on Horner’s method and its application in solving
polynomial equations by determining the location of roots.

The objectives of this paper can be described as follows:

• Illustration and finalization of the block quotient-difference (Q.D.) algo-
rithm for the purpose of spectral decomposition and matrix polynomial
factorization.

• Construction of a new block-Horner array and block-Horner algorithm for
extracting the complete set of spectral factors of matrix polynomials.

• Proposing a combined algorithm for the purpose of fast convergence, high
stability and for avoiding the initial guess.

• Finally, we have commented on and discussed the obtained results with some
perspectives and suggestions, which are stated for the completeness of the
work, and we finish the paper by conclusion.

2. Preliminaries

For completeness of derivations presented in the latter part of this paper, we
review pertinent definitions and theorems below.

2.1. Survey on matrix polynomials

Here we are going to define and explore some algebraic theory of matrix polyno-
mials, solvents, latent structure, spectral factors and the transformation between
solvents and spectral factors.
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Definition 1 Given the set of m×m complex matrices A0, A1, ..., Al, the fol-
lowing matrix valued function of the complex variable λ is called a matrix poly-
nomial of degree l and order m:

A(λ) = A0λ
l +A1λ

l−1 + ...+Al−1λ+Al. (1)

Definition 2 The matrix polynomial A(λ) is called:
i. Monic if A0 is the identity matrix.
ii. Comonic if Al is the identity matrix.
iii. Regular if det(A(λ)) 6= 0.
iv. Singular if det(A(λ)) is identically zero.
v. Unimodular if det(A(λ)) is nonzero constant.

Definition 3 The complex number λi is called a latent root of the matrix poly-
nomial A(λ) if it is a solution of the scalar polynomial equation det(A(λ)) = 0.
The nontrivial vector p, solution of A(λi)p = 0m, is called a primary right la-
tent vector associated with λi. Similarly, the nontrivial vector q, solution of
qTA(λi) = 0m, is called a primary left latent vector associated with λi.

Remark 1 In this work we suppose that the eigenvalues of the matrix polyno-
mial A(λ) are distinct, and that A(λ) is a monic matrix polynomial.

If A(λ) has a singular leading matrix coefficient (Al), then A(λ) has latent
roots at infinity. From the definition we can see that the latent problem of a
matrix polynomial is a generalization of the concept of eigenproblem for square
matrices. Indeed, we can consider the classical eigenvalues/vector problem as
finding the latent root/vector of a linear matrix polynomial (λI − A). We can
also define the spectrum of a matrix polynomial A(λ) as being the set of all its
latent roots (notation σ(λ)). It is essentially the same definition as the one of
the spectrum of a square matrix.

Definition 4 A right block root is also called solvent of monic λ-matrix A(λ)
and is an m×m real matrix R such that:

Rl +A1R
l−1 + ...+Al−1R+Al = Om

⇔ AR(R) =

l
∑

i=0

AiR
l−i = Om,

(2)

while a left solvent is an m×m real matrix L such that:

Ll + Ll−1A1 + ...+ LAl−1 +Al = Om

⇔ AL(L) =

l
∑

i=0

Ll−iAi = Om.
(3)

The following are important facts on solvents (Leang et al., 1986):
• Solvents of a matrix polynomial do not always exist.
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• Generalized right (left) eigenvectors of a right (left) solvent are the gener-
alized latent vectors of the corresponding matrix polynomial.

Definition 5 A matrix R (respectively: L) is called a right (respectively: left)
solvent of the matrix polynomial if and only if the binomial (λI−R) (respectively:
(λI − L)) divides exactly A(λ) on the right (respectively: left).

Theorem 1 (Hariche and Denman, 1989) Given a matrix polynomial

A(λ) = A0λ
l +A1λ

l−1 + ...+Al−1λ+Al (4)

a) The remainder of the division of A(λ) on the right by the binomial (λI −X)
is AR(X)
b) The remainder of the division of A(λ) on the left by the binomial (λI −X)
is AL(X) .

This means that there exist matrix polynomials Q(λ) and S(λ) such that:

A(λ) = Q(λ)(λI −X) +AR(X)

= (λI −X)S(λ) +AL(X).
(5)

Corollary 1 Hariche and Denman (1989) also give the fundamental relation
that exists between the right solvent (respectively: left solvent) and the right
(respectively: left) linear factor:

AR(X) = 0 iff A(λ) = Q(λ)(λI −X)
AL(X) = 0 iff A(λ) = (λI −X)S(λ).

(6)

Definition 6 A set of solvents {R1, R2, ..., Rl} is a complete set if ∪σ(Ri) =
σ(Ac), where σ denotes the spectrum of a matrix.

Theorem 2 (Dennis, Traub and Weber, 1976) A set of solvents {R1, R2, ..., Rl}
is a complete set if and only if det(VR (R1, R2, ..., Rl)) 6= 0, where VR is a Van-
dermonde matrix, corresponding to {R1, R2, ..., Rl}, given as

VR(R1, R2, ..., Rl) =











Im Im ... Im
R1 R2 ... Rl

...
... ...

...

Rl−1
1 Rl−1

2 ... Rl−1
l











. (7)

Remark 2 We can define a set of left solvents in the same way as in the pre-
vious theorem. The relationship between latent roots, latent vectors, and the
solvents can be stated as follows:

Theorem 3 (Tsai, Chen and Shieh, 1992) If A(λ) has n linearly independent
right latent vectors p1, p2, ..., pn (left latent vectors q1, q2, ..., qn) corresponding to
latent roots λ1, λ2, ..., λn, then PΛP−1, (QΛQ−1) is a right (left) solvent, where:
P = [p1, p2, ..., pn], (Q = [q1, q2, ..., qn]

T ) and Λ = diag(λ1, λ2, . . . , λn).
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Proof See Tsai, Chen and Shieh (1992).

Theorem 4 (Tsai, Chen and Shieh, 1992) If A(λ) has n latent roots λ1, λ2,

..., λn and the corresponding right latent vectors p1, p2, ..., pn, as well as the left
latent vectors q1, q2, ..., qn are both linearly independent, then the associated right
solvent R and left solvent L are related by: R = WLW−1, where: W = PQ and
P = [p1, p2, ..., pn], (Q = [q1, q2, ..., qn]

T ) and ”T ” stands for transpose.

For design and analysis of large-scale multivariable systems, it is necessary to
determine a complete set of solvents of the matrix polynomial. Given the ma-
trix polynomial A(λ), if a right solvent R is obtained, the left solvent L of
A(λ), associated with R, can be determined by using the following algorithmic
relationship (Tsai, Chen and Shieh, 1992):

L = Q−1RQ rank(Q) = m, (8)

where Q is the solution of the following linear matrix equation (see Tsai, Chen
and Shieh, 1992):

l−1
∑

i=0

Rl−1−iQBi = Im, (9)

or, in the vector form, using the Kronecker product, we have

V ec(Q) =

(

l−1
∑

i=0

Bi
T ⊗

(

Rl−1−i
)

)−1

V ec(Im), (10)

where:
⊗

designates the Kronecker product, and Bi are the matrix coefficients
of B(λ) with λIm −R factored out from A(λ), i.e.,

B(λ) = A(λ)
(

λIm −R
)−1

=

l−1
∑

i=0

Biλ
l−1−i (11)

B(λ) = B0λ
l−1 +B1λ

l−2 + ...+Bl−1. (12)

We can compute the coefficients Bi, using the algorithm of synthetic division:

ccB0 = Im

B1 = B0A1 +B0R

· · ·

Bk = B0Ak +Bk−1R k = 1, 2, ..., l− 1

Om = B0Al +Bl−1R.

Theorem 5 (Tsai, Chen and Shieh, 1992) If the elementary divisors of A(λ)
are linear, then A(λ) can be factored into the product of l-linear monic λ-
matrices called a complete set of spectral factors,

A(λ) = (λIm −Ql)(λIm −Ql−1)...(λIm −Q1), (13)
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where (λIm −Qi), i = 1, ..., l are referred to as a complete set of linear spectral
factors. The m×m complex matrices Qi, i = 1, ..., l are called the spectral factors
of the λ-matrix A(λ).

The most right spectral factor Q1 is a right solvent of A(λ) and the most left
spectral factor Ql is a left solvent of A(λ), whereas the remaining spectral
factors may or may not be solvents of A(λ). The relationship between solvents
and spectral factors was explored in Tsay, Chen and Shieh(1992), and various
transformations have been developed.

2.2. Transformation of solvents to spectral factors

Since the diagonal forms of a complete set of solvents and those of a complete
set of spectral factors are identical, then they are related by similarity transfor-
mation.

Theorem 6 (Shieh and Tsay, 1981) Consider a complete set of right solvents
{R1, R2, ..., Rl} of monic λ-matrix A(λ); then A(λ) can be factored as:

A(λ) = Nl(λ) = (λIm −Ql)(λIm −Ql−1)...(λIm −Q1)

by using the following recursive scheme

Qk =
(

N(k−1)R(Rk)
)

Rk

(

N(k−1)R(Rk)
)−1

, k = 1, ..., l (14)

where:

Nk(λ) = (λIm −Qk)Nk−1(λ) k = 1, ..., l (15)

and for any j we write

NkR(Rj) = N(k−1)R(Rj)Rj −QkN(k−1)R(Rj), k = 1, ..., l

with: N0(λ) = Im N0R(Rj) = Im for any j and rank(N(k−1)R(Rk)) = m, k =
1, ..., l.

Proof See Shieh and Tsay (1981).

In a similar manner, the spectral factors can be obtained from the known Li of
A(λ) as follow:

Qk = Ql+1−k (16)

Qk =
(

M(k−1)L(Lk)
)−1

Lk

(

M(k−1)L(Lk)
)

, k = 1, ..., l (17)

where

Mk(λ) = Mk−1(λ)(λIm −Qk) k = 1, ..., l (18)
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and for any j we write

MkL(Lj) = LjM(k−1)L(Lj)−M(k−1)L(Lj)Qk, k = 1, ..., l

with:

M0(λ) = Im M0L(Lj) = Im for any j

rank(M(k−1)L(Lk)) = m k = 1, ..., l.

M(k−1)L(Li) is a left matrix polynomial of M(k−1)(λ) having λ replaced by a
left solvent Lj, so that the spectral factorization of A(λ) becomes:

A(λ) = Ml(λ) = (λIm −Q1)(λIm −Q2)...(λIm −Ql).

2.3. Transformation of spectral factors to solvents

Given a complete set of spectral factors of a λ-matrix A(λ), then a corresponding
complete set of right (left) solvents can be obtained. The transformation of
spectral factors to right (left) solvents of a λ-matrix can be derived as follows:

Theorem 7 Given a monic λ-matrix with all elementary divisors being linear

A(λ) = (λIm −Ql)(λIm −Ql−1)...(λIm −Q1)

where Qi (, Ql+1−i) i = 1, ..., l are a complete set of spectral factors of a
λ-matrix A(λ), and Qi

⋂

Qj = ∅ define λ-matrices Ni(λ) i = 1, ..., l as follows:

Ni(λ) = (λI −Qi)
−1Ni−1(λ) (19)

Ni(λ) = Imλl−i +A1iλ
l−i−1 + ...+A(l−i−1)iλ+A(l−i)i (20)

with N0 = A(λ), then the transformation matrix Pi, which transforms the spec-
tral factor Qi (, Ql+1−i) to the right solvent Ri (, Rl+1−i) of A(λ) can be
constructed from the new algorithm as follows (rank(Pi) = m):

Ri , Rl+1−i = PiQiPi
−1i = 1, ..., l (21)

where the m × m matrix Pi can be solved from the following matrix equation,
i = 1, ...,m:

V ec(Pi) = (GNi(Qi))
−1V ec(Im) (22)

in which GNi(Qi) (rank(GNi
(Qi)) = m2) is defined by:

GNi(Qi) , (Ql−i
i )

T
⊗

Im +(Ql−i−1
i )

T
⊗

A1i+ ...+Qi
T ⊗

A(l−i)i+ Im
⊗

A(l−i)i.

Proof See Shieh and Tsay (1981).



On the block decomposition and spectral factors of λ-matrices 49

In the same fashion the complete set of spectral factors Qi, i = 1, 2, ..., l can be
converted into the left solvents Li, i = 1, 2, ..., l using the following algorithm:

Mi(λ) = Mi−1(λ)(λIm −Qi)
−1, i = 1, ..., l (23)

Mi(λ) = Imλl−i +A1iλ
l−i−1 + ...+A(l−i−1)iλ+A(l−i)i (24)

HMi(Qi) , Im
⊗

Ql−i
i +AT

1i
⊗

Ql−i−1
i + ...+AT

(l−i−1)i
⊗

Qi +AT
(l−i)i

⊗

Im

V ec(Si) = (HMi(Qi))
−1V ec(Im), rank(HMi

(Qi)) = m2

Li = S−1
i QiSi i = 1, ..., l. (25)

2.4. Block companion forms

In analogy with scalar polynomials, a useful tool for the analysis of matrix
polynomials is the block companion form matrix. Given a λ-matrix as in eq.(1)
where Ai ∈ Cm×m and λ ∈ C, the associated block right and left companion
form matrices are:

AR =

















Om Im · · · Om

Om Om · · · Om

...
... . . . Om

Om Om

... Im
−Al −Al−1 · · · −A1

















, AL =















Om · · · Om −Al

Im · · · Om −Al−1

...
...

...
...

Om · · · Om −A2

Om · · · Im −A1















. (26)

Note that AL is the block transpose of AR. If the matrix polynomial A(λ) has
a complete set of solvents, these companion matrices can be respectively block
diagonalised via the right (left) block Vandermonde matrix, defined by:

VR =











Im Im ... Im
R1 R2 ... Rl

...
... ...

...

Rl−1
1 Rl−1

2 ... Rl−1
l











, VL =











Im L1 · · ·L1
l−1

Im L2 · · ·L2
l−1

...
...

. . .
...

Im Ll · · ·Ll
l−1











(27)

where R1, R2, ..., Rl and/or L1, L2, ..., Ll represent the complete set of right (left)
solvents. Since the block Vandermonde matrices are nonsingular, see Yaici and
Hariche (2014a,b), and Yaici, Hariche and Tim (2014), we can write

VR
−1ARVR = Blockdiag(R1, R2, ..., Rl) (28)

VL
−1ALVL = Blockdiag(L1, L2, ..., Ll). (29)

These similarity transformations do a block decoupling of the spectrum of A(λ),
which is very useful in the analysis and design of high order control systems.
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3. Spectral factorization algorithms

In this section we are going to present some of the existing algorithms that can
factorize a linear term from a given matrix polynomial. Firstly, we consider
the generalized quotient difference algorithm, and next we give a new extended
algorithm, based on the Horner scheme. The matrix quotient-difference (Q.D.)
algorithm is a generalization of the scalar one (Henrici, 1958). The use of the
Q.D. algorithm for such purpose has been suggested firstly in Zabot and Hariche
(1997). The scalar Q.D. algorithm is just one of the many global methods that
are commonly used for finding the roots of a scalar polynomial. The Quotient-
Difference scheme for matrix polynomials can be defined just like the scalar one
(Dahimene, 2009) by a set of recurrence equations. The algorithm consists in
building a table that we call the Q.D. tableau.

3.1. The right block matrix Q.D. algorithm

Given a matrix polynomial with nonsingular coefficients as in eq. (4), the ob-
jective is to find the spectral factors of A(λ) that will allow us to write A(λ)
as a product of n linear factors as in eq. (14). Writing in block left companion
form, we have:

C3 =















−A1 Im · · · Om

−A2 Om · · · Om

...
...

...
...

−Al−1 · · · · · · Im
−Al · · · · · · Om















. (30)

The required transformation is a sequence of LR decomposition such that:

C3 =

(

C11 C12

C21 C22

)

=

(

Im Om

Xm Im

)(

A B

C D

)

(31)

where:

C11 =















−A1 Im · · · Om

−A2 Om · · · Om

...
...

...
...

−Al−2 · · · · · · Im
−Al−1 · · · · · · Om















, C12 =















Om

Om

...
Om

Im















C21 = [−Al Om Om, ..., Om], C22 = [Om].

It is required to have C = 0, then let

X = [−X1 X2 X3, ..., Xl−1]. (32)

We obtain the following set of equations:

X1A1 +X2A2 + ...+Xl−1Al−1 = Al

X1 = X2 = ... = Xl−2 = 0

Xl−1 +D = 0.
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The above leads to the following decomposition of C3:

C3 =















Im · · · Om Om

Om · · · Om Om

...
...

...
...

Om · · · Im Om

Om · · · AlA
−1
l−1 Im





























−A1 Im · · · Om

−A2 Om · · · Om

...
...

...
...

−Al−1 Om · · · Im
Om Om · · · −AlA

−1
l−1















.

Hence, C3 can be written as:

C3 = L−(l−2)R−(l−2). (33)

We continue this process for the block C11 up till C3 is equivalent to a matrix
R0

C3 = L−(l−2)L−(l−3)...L0R0 (34)

R0 =















−A1 Im · · · Om Om

Om −A2A
−1
1 · · · Om Om

...
...

...
...

...
Om Om · · · −Al−1A

−1
l−2 Im

Om Om · · · Om −AlA
−1
l−1















. (35)

It is clear that if the matrices L0, L−1, ..., Ll−2 are equal to identity matrices,
then the block companion matrix C3 will be similar to the following matrix:

M =















Q1 Im · · · Om Om

Om Q2 · · · Om Om

...
...

...
...

...
Om Om · · · Ql−1 Im
Om Om · · · Om Ql















. (36)

The following theorem shows that under certain conditions, the sequence of
L0, L−1, ..., Ll−2 converges to identities.

Theorem 8 Let M = XΛX−1, where

Λ =











R1 Om · · · Om

Om R2 · · · Om

...
...

. . .
...

Om Om · · · Rl











. (37)

If the following conditions are satisfied:

a) dominance relation exists between Rk: R1 > R2 > ....Rl

b) X−1 = Y has a block LR factorization LyRy

c) X has a block LR factorization LxRx

then the block LR algorithm just defined converges (i.e. Lk → I).



52 B. Bekhiti, B. Nail, A. Dahimene, K. Hariche and G. F. Fragulis

Proof The proof is similar to the one in Parlett (1967), see also Dahimene
(2009).

It means that we can start the Q.D. algorithm by considering:

E1
(0) = −A2A1

−1, E2
(−1) = −A3A2

−1,

E3
(−2) = −A4A3

−1, ..., El−1
−(l−2) = −AlAl−1

−1,

Q1
(0) = −A1, Q2

(−1) = Om, ..., Ql−1
−(l−2) = Om.

Those last two equations provide us with the first two rows of the Q.D. tableau
(one row of Q′s and one row of E′s). Hence, we can solve the rhombus rules
for the bottom element (called the south element by Henrici, 1958). We obtain
the row generation of the Q.D. algorithm:

{

Qi
(j+1) = Qi

(j) + Ei
(j) − Ei

(j+1)

Ei
(j+1) = Qi+1

(j)Ei
(j)

[

Qi
(j+1)

]−1 . (38)

Writing this in tabular form yields

Table 1. The extended Q.D scheme

−A1 Om Om · · ·

Om −A2A1
−1 −A3A2

−1 −A4A3
−1 · · ·

Q1
(1) Q2

(0) Q3
(−1) · · ·

Om E1
(1) E2

(0) E3
(−1) · · ·

Q1
(2) Q2

(1) Q3
(0) · · ·

Om E1
(2) E2

(1) E3
(0) · · ·

Q1
(3) Q2

(2) Q3
(1) · · ·

...
...

...
...

...
...

...
. . .

where the Qi
(j) are the spectral factors of A(λ). In addition, note that the Q.D.

algorithm gives all spectral factors simultaneously and in the dominance order.
We have chosen, in the above scheme, the row generation algorithm because it
is more stable numerically. For further information about the row generation
algorithm and the column generation algorithm we may refer the reader to see
Dahimene (2009).
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Example 1 Consider a matrix polynomial of 2nd order and 3rd degree with the
following matrix coefficients.

A0 =
(

1 0
0 1

)

, A1 =
(

−27.152538 0.8166050
−179.782629 38.152538

)

,

A2 =
(

116.387033 84.978971
1043.444653 836.739866

)

, A3 =
(

126.928789 335.502350
1038.682417 2947.561338

)

.

We apply now the generalized row generation Q.D. algorithm to find the com-
plete set of spectral factors and then we use the similarity transformations given
by Shieh to obtain the complete set of solvents both right and left.

Step 1 initialization of the program to start:
Enter the degree and the order m = 2, l = 3
Enter the number of iterations N = 35
Enter the matrix polynomial coefficients Ai

Step 2 Construct Q1 and E1, the first row of Q′s and the first row of E′s

Q1 = [−A1A
−1
0 O2 O2], E1 = [O2 A2A

−1
1 A3A

−1
2 O2]

Step 3 Building or generating the rest of rows using the rhombus rules

For n = 1 : N
E2 = 0;Q2 = 0;

For k = 1 : 2 : m ⋆ l

q2 = (E1((:; k + 2 : k + 3)− E1(:; k : k + 1)) +Q1(:; k : k + 1);
Q2 = [Q2; q2];

End
Q2;

For k = 1 : 2 : m ⋆ l − 2
e2 = (Q2(:; k + 2 : k + 3))(E1(:; k : k + 1))(Q2(:; (k : k + 1)))−1;
E2 = [E2; e2];

End
E2 = [O2;E2;O2];
Q1 = Q2;
E1 = E2;
End
Q1;
S1 = Q1(:; 1 : 2)S2 = Q1(:; 3 : 4)S3 = Q1(:; 5 : 6)

When we run the above scheme, then we obtain the following complete set
of spectral factors Si:

Q1 =
(

3.0000 2.0000 −8.2908 0.7118 32.4434 −3.5284
−90.000 −15.000 −16.8400 8.1248 286.6226 −31.2773

)

S1 =
(

3.0 2.0
−90.0 −15.0

)

, S2 =
(

−8.2908 0.7118
−16.8400 8.1248

)

,
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S3 =
(

32.4434 −3.5284
286.6226 −31.2773

)

.

Now, we should extract a complete set of right solvents from those block spectra
using the algorithmic similarity transformations in equations from (21) to (24).

Step 1 Reversing the orientation of spectral factors (spectral factors are noted
by Si)

U1 = S3; U2 = S2; U3 = S1.

Step 2 Determination of coefficients using the synthetic long division and then
finding the corresponding transformation matrix as in Theorem 7.

N11 = A1 + U1;

N12 = A2 + U1 ⋆ N11;

G1 = (U2
1 )

T
⊗

I2 + (U1)
T
⊗

N11 + I2
⊗

N12;

vecp1 = G−1
1 ⋆ [1; 0; 0; 1]

p1 = [vecp1(1 : 2), vecp1(3 : 4)];

R1 = p1 ⋆ U1 ⋆ (p1)
−1.

One can verify the first solvent using:
rightzero1= A0 ⋆ (R1)

3 +A1 ⋆ (R1)
2 +A2 ⋆ R1 +A3 .

Step 3 Redo the same process for the next right solvents

N21 = N11 + U2;

G2 = (U2)
T
⊗

I2 + I2
⊗

N21;

vec p2 = G−1
2 ⋆ [1; 0; 0; 1]

p2 = [vec p2(1 : 2), vec p2(3 : 4)];

R2 = p2 ⋆ U2 ⋆ (p2)
−1.

For verification one can also use:
rightzero 2= A0 ⋆ (R2)

3 +A1 ⋆ (R2)
2 +A2 ⋆ R2 +A3 .

Step 4 Regarding the last solvents we obtain them directly from the most left
spectral factor: R3 = S1 or we use the defined transformation:

G3 = (I2)
T
⊗

I2;

vecp3 = G−1
3 ⋆ [1; 0; 0; 1]

p3 = [vecp3(1 : 2), vecp3(3 : 4)];

R3 = p3 ⋆ U3 ⋆ p
−1
3 = U3.

The result of this procedure so is as follows:

R1 =
(

0.36366 −4.5495
−0.81832 0.80238

)

, R2 =
(

7.2354 1.4024
1.2995 −7.4015

)

,
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R3 =
(

3.0000 2.0000
−90.000 −15.000

)

.

Finally, we can also obtain the corresponding complete set of left solvents using
the algorithmic similarity transformation, described in equations from (10) to
(12).

Step 1 Determination of coefficients using the synthetic long division

B0i = I2;

B1i = A1 +Ri;

B2i = A2 +B1i ⋆ Ri.

Step 2 Finding the corresponding similarity transformation matrix as in equa-
tions (10) to (12).

For i = 1 : l

vecQi = (BT
0i ⊗ (Ri)

2 + (B1i)
T ⊗Ri + (B2i)

T ⊗ I2)
−1 ⋆ [1; 0; 0; 1];

Qi = [vecQi(1 : 2), vecQi(3; 4];

li = (Qi)
−1 ⋆ Ri ⋆ Qi.

One can verify the left solvents using:
Leftzero = L3

i ⋆ A0 + L2
i ⋆ A1 + Li ⋆ A2 +A3

End

The left solvents are now obtained:

L1 =
(

32.443 −3.5284
286.622 −31.2773

)

, L2 =
(

25.1323 −2.8370
204.5931 −25.2983

)

,

L3 =
(

21.0123 −4.6531
178.0910 −33.0123

)

.

3.2. Extended Horner algorithm

Horner’s method is a technique for evaluating a polynomials quickly. It requires
l multiplications and l additions to evaluate a polynomial equation. It is also
a nested algorithmic program that can decompose a polynomial into a multi-
plication of l linear factors, this scheme (Horner’s method) being based on the
Euclidean synthetic long division.

As a division algorithm, Horner’s method is a nesting technique, requiring
only l multiplications and l additions to evaluate an arbitrary lth-degree poly-
nomial, which can be surveyed by Horner’s theorem (Burden and Faires, 2005).
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Theorem 9 Let the function P (x) be the polynomial of degree l, defined on the
real field P : R→ R, where: ai are constant coefficients and x is real variable.

P (x) = a0x
l + a1x

l−1 + ...+ al−1x+ al. (39)

If b0 = a0 and bk = ak + bk−1α, k = l, ..., 2, 1,
then bl = P (α) and P (x) can be written as:

P (x) = (x− α)Q(x) + bl, (40)

where:

Q(x) = b0x
l−1 + b1x

l−2 + ...+ bl−2x+ bl−1. (41)

Proof The theorem can be proven using a direct calculation.

P (x) = a0x
l + a1x

l−1 + ...+ al−1x+ al

P (x) = (x− α)(b0x
l−1 + b1x

l−2 + ...+ bl−2x+ bl−1) + bl.

Identifying the coefficients of x with different powers we get:

b0 = a0

b1 = a1 + b0α

...

bk = ak + bk−1α where k = l, l− 1, ..., 2.

Now, if α is a root of the polynomial P (x), then bl should be zero, and
al + bl−1α = 0.

Hence, we may write

α = −

(

al

bl−1

)

or xk+1 = −

(

al

bl−1,k

)

k = 0, 1, ...

The algorithm of the Horner method in its recursive formula is then:

bi,k = ak + bi,k−1xk; i = 1, ..., l and b0,k = a0.

Now, let us generalize this nested algorithm to matrix polynomials, consider
the monic λ-matrix A(λ) and according to Theorem 1 the matrix A(λ) can be
factored as:

A(λ) = Q(λ)(λI −X) +AR(X). (42)
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Here,

A(λ) = A0λ
l +A1λ

l−1 + ...+Al =

l
∑

i=0

Aiλ
l−i

Q(λ) = B0λ
l−1 + B1λ

l−2 + ...+Bl−1 =

l−1
∑

i=0

Biλ
l−i−1

AR(X) = constant.

By using the algorithm of synthetic long division for matrices we get:

B0 = A0 = Im

B1 = B0A1 +B0X

· · ·

Bk = B0Ak +Bk−1X k = 1, 2, ..., l− 1

Om = B0Al +Bl−1X.

On the basis of the last two equations we can iterate the process to get the
recursive algorithm as follows:

Enter the number of iterations N
For k = 0 : N
Enter the degree and the order m; l
Enter the matrix polynomial coefficients Ai

X0 = initial guess;
For i = 1 : l

Bi,k = B0Ai +Bi−1,kXk;
End

Xk+1 = −(B(l−1),k)
−1B0Al;

Xk = Xk+1;
End

When you get the first spectral factor, repeat the process until you get the
complete set.

Example 2 Consider a matrix polynomial of 2nd order and 3rd degree with the
following matrix coefficients.

A(λ) = A0λ
3 +A1λ

2 +A2λ+A3

with

A0 =
(

1 0
0 1

)

, A1 =
(

11.0000 −1.0000
6.7196 17.0000

)

,

A2 =
(

30.0000 −11.0000
70.9107 82.5304

)

, A3 =
(

−0.0000 −30.0000
182.0000 89.8393

)

.



58 B. Bekhiti, B. Nail, A. Dahimene, K. Hariche and G. F. Fragulis

We apply now the extended Horner’s method via its algorithmic version to find
the complete set of spectral factors and then we use the similarity transforma-
tions, given by Shieh and Tsay (1981) to obtain the complete set of solvents,
both right and left.

To make the procedure clear and more understandable, let us first give the
block Horner scheme in its algorithmic version:

Assume X0 = O2 as an initial guess
Initial starting value of iterations k = 0 and (X0 = O2)
η : tolerance error
Given ε where ε ≥ η

While ε ≥ η

A0 =

(

1 0
0 1

)

A1 =

(

11.0000 −1.0000
6.7196 17.0000

)

B0 = A0 =

(

1 0
0 1

)

A2 =

(

30.0000 −11.0000
70.9107 82.5304

)

,







B1(k) = B0A1 +B0Xk

B1(0) =

(

11.0000 −1.0000
6.7196 17.0000

)

A3 =

(

−0.0000 −30.0000
182.0000 89.8393

)

,







B2(k) = B0A2 +B1(k)Xk

B2(0) =

(

30.0000 −11.0000
70.9107 82.5304

)

Xk+1 = −(B2(k))
−1B0A3

ε = 100.
||Xk+1 −Xk||

||X − k||

Xk = Xk+1

k = k + 1

End

Start the procedure and let it running, and in effect we obtain the following
complete set of spectral factors:

S1 =
(

0.00 1.00
−3.25 2.00

)

, S2 =
(

−5.000 0.000
−1.6042 −7.000

)

, S3 =
(

−6.000 −0.000
−1.8655 8.000

)

.

Finally, when we apply the similarity transformation algorithm, as in equations
from (21) to (24), to right (or left) solvent form, we get:

R1 =
(

−5.9574 0.2553
−0.3404 −8.0426

)

, R2 =
(

−4.9412 0.2941
−0.4118 −7.0588

)

, R3 =
(

0.000 1
−3.25 −2

)

.
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3.2.1. Reformulation of the block Horner method

Now, we will introduce a new perspective on the preceding procedure, which
constitutes an efficient algorithm for the convergence study. Thus, with some
reconfigurations and algebraic manipulation, we have:

B0(k) = A0 = Im

B1(k) = B0(k)A1 +B0(k)X(k)

...

Bl−1(k) = B0(k)Al−1 +Bl−2(k)X(k)

Om = B0(k)Al +Bl−1(k)X(k).

After back substitution we get:

Bl−1(k) = Al−1 + ...+A1X
l−1(k) +B0X

l(k)

⇒ Bl−1(k) = [AR(Xk)−Al]X
−1
k

⇒ (Bl−1(k))
−1 = Xk[AR(Xk)−Al]

−1.

Finally, we obtain the following iterative formula (k = 0, 1, ...):

Xk+1 = −(Bl−1(k))
−1Al = Xk[Al −AR(Xk)]

−1Al. (43)

Algorithm:

Enter the degree and the order, m, l

Enter the matrix polynomial coefficients Ai ∈ Rm×m

X0 ∈ Rm×m = initial guess;
Give some small η and (δ =initial start)> η

k = 0

While δ ≥ η

Xk+1 = Xk[Al −ARXk]
−1Al;

δ = 100.
‖Xk+1 −Xk‖

‖Xk‖
;

Xk ← Xk+1;

k = k + 1;

End

Convergence condition

Using the last iterated equation (43) that we have obtained and with the help
of some norm properties we can establish under what conditions the algorithm
will converge to the needed solution.
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1. Upper bound

eq.(45)⇔ Xk+1 −Xk = Xk+1A
−1
l AR(Xk)

eq.(45)⇔ ‖Xk+1 −Xk‖ = ‖Xk+1A
−1
l AR(Xk)‖

eq.(45)⇔ ‖Xk+1 −Xk‖ ≤ ‖Xk+1‖.‖A
−1
l ‖.‖ARXk‖

eq.(45)⇔
‖Xk+1 −Xk‖

(

‖Xk+1‖.‖A
−1
l ‖

) ≤ ‖AR(Xk)‖

Now, if Xk tends to a constant matrix ‖Xk‖ →M as k→∞ and ‖X−1
k ‖ → N

with ‖A−1
l ‖ = γ and ‖Al‖ = δ, then:

lim
k→∞

‖AR(Xk)‖ ≥
‖X(k + 1)−Xk‖

(

‖X(k + 1)‖.‖A−1
l ‖

)

⇒ lim
k→∞

‖AR(Xk)‖ ≥
ξk

γ.M
. (44)

2. Lower bound

AR(Xk) = Al[I −X−1
k+1Xk] = Al(Xk+1)

−1[Xk+1 −Xk]

⇒ ‖AR(Xk)‖ ≤ ‖Al‖.‖(Xk+1)
−1‖.‖Xk+1 −Xk‖

⇒ lim
k→∞

‖AR(Xk)‖ ≤ δ.Nξk. (45)

From the above results (44) and (45) we can deduce that:

ξk

γ.M
≤ lim

k→∞
‖AR(Xk)‖ ≤ δ.Nξk (46)

Finally, if the matrix Xk tends to a constant matrix Xk → S and (Al−AR(Xk))
is a nonsingular matrix, then S is a solvent of the matrix polynomial AR(S) =
Om.

Convergence type

In order to deduce the convergence type we should get a ratio relationship
between any two successive differences

Xk+1 − S = Xk([Al −AR(Xk)]
−1Al − I) +Xk − S. (47)

Let us define F (Xk) = ([Al −AR(Xk)]
−1Al − I), then we have:

‖Xk − S‖ − ‖XkF (Xk)‖ ≤ ‖Xk+1 − S‖ ≤ ‖Xk − S‖+ ‖XkF (Xk)‖. (48)

We know that:

lim
k→∞

‖XkF (Xk)‖ = lim
k→∞

∆k = ξ, (49)
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and from equations (50) and (51) we deduce that:

1−
∆k

‖Xk − S‖
≤
‖Xk+1 − S‖

‖Xk − S‖
≤ 1 +

∆k

‖Xk − S‖
.

Finally:

lim
k→∞

‖Xk+1 − S‖

‖Xk − S‖
= 1. (50)

The block Horner method linearly converges or, more precisely, it is worse than
linear, but, on the other hand, it does not depend so much on the initial condi-
tions (knowledge of the starting point).

Example 3 Consider the following matrix polynomial with repeated spectral
factor:

A(λ) =
[

λI −
(

−7.1230 −6.3246
5.9279 5.1230

)
]2

= A0λ
2 +A1λ+A2,

with

A0 =
(

1 0
0 1

)

, A1 =
(

14.2461 12.6493
−11.8557 −10.2461

)

A2 =
(

13.2461 12.6493
−11.8557 −11.2461

)

.

Find X such that AR(X) = O2

AR(X) = A0X
2 +A1X +A2.

If we apply the block Horner algorithm, we find

X1 =
(

−2.7323 −1.8068
1.6798 0.7521

)

, X2 =
(

−11.5138 −10.8424
10.1759 9.4939

)

.

Remark 3 The proposed Horner algorithm finds the whole set of spectral factors
if it exists, and does this even if there is no dominance in between them.

3.2.2. Crossbred Newton–Horner method

In order to accelerate the block Horner method we make a crossbred (hybrid)
with generalized Newton algorithm, which is very fast due to its restricted local
nature (i.e. quadratic convergence). Hence, the obtained algorithm will benefit
from the advantages of both of them, being faster in execution and featuring
wide–range starting point.

Horner iteration Newton iteration

Xk+1 −Xk = Xk+1A
−1
l AR(Xk), Xk+1 −Xk = −J−1(Xk)AR(Xk)

By combining them, we get:

X(k+1 = Xk + (Xk − J−1(Xk)AR(Xk))Al
−1AR(Xk), (51)

where J(Xk) is the Frechet differential.
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Definition 7 Let B1 and B2 be Banach spaces and AR a nonlinear operator
from B1 to B2. If there exists a linear operator L from B1 to B2 such that:

B1 → B2

H → L(X +H)

where:

‖AR(X +H)−AR(X)− L(X +H)‖ = O(‖H‖)

X,H ∈ B1 AR(X), L(X +H) ∈ B2

then L(X + H) is called the Frechet derivative of AR at X and sometimes is
written dAR(X,H). It is also read the Frechet derivative of AR at X in the
direction H, and J(Xk).H = L(X +H).

Algorithm:

Enter the degree and the order, m, l

Enter the matrix polynomial coefficients Ai ∈ Rm×m

X0 ∈ Rm×m = initial guess;
Give initial J(X0) ∈ Rm×m

Give some small η and (δ = initial start) > η

k = 0
While δ ≥ η

Xk+1 = Xk(Im +A−1
l Ar(Xk))− J−1(Xk)AR(XK)A−1

l AR(Xk);

Hk = Xk+1 −Xk;

J(Xk) = (AR(Xk+1)−AR(Xk))H
−1
k ;

δ = 100.
||Xk+1 −Xk||

||Xk||
;

Xk ← Xk+1;

k = k + 1;

End

3.2.3. Two stage block Horner algorithm

To accelerate the block Horner algorithm we use now a two stage and/or the
Newton like iteration. Now, by using Theorem 1 we get the following equation:

AR(X) = (X −Θ)(X l−1 +B1X
l−2 + ...+Bl−1) +Bl

⇒ AR(X) = (X −Θ)Q(X) +Bl

⇒ X −Θ = (AR(X)−Bl)Q
−1(X),

where Q(X) = X l−1+B1X
l−2+ ...+Bl−1 and AR(Θ) = Bl. Now, if Θ is a sol-

vent, then Bl = Om. If we now assume that Θ = Xk+1 is a solvent to the matrix
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polynomial AR, then AR(Xk+1) = Om and Xk+1 = Xk − AR(Xk)Q
−1(Xk+1).

Set also Q(X) = (X −Θ)(X l−1 +C1X
l−2 + ...+Cl−2) +Cl−1. On the basis of

the Horner scheme we can evaluate both Bi and Ci recursively:

B0 = Im
B1 = A1 +B0X C0 = Im
B2 = A2 +B1X C1 = B1 + C0X

... C2 = B2 + C1X

Bl−1 = Al−1 +Bl−2X ...

Om = Bl = Al +Bl−1X = AR(X) Cl−1 = Bl−1 + Cl−2X = Q(X)

After iterating the last equation

we get:
After iterating the last equation

we get:
Bl(k) = Al +Bl−1(k)Xk Cl−1(k) = Bl−1(k) + Cl−2(k)Xk

Bl(k) = AR(Xk) Cl−1(k) = Q(Xk)

Algorithm:

X0 =initial guess, (B0 = C0 = I) ∈ Rm×m

Enter small enough number η (tolerance error)
(δ = initial start ) > η

Enter the set of m×m (A0;A1, ..., Al) matrices
k = 0
While δ > η

For i = 1 : 1 : l
Bi(k) = Ai +Bi−1(k)Xk

End
For i = 1 : 1 : l − 1

Ci(k) = Bi(k) + Ci−1(k)Xk

End
Xk+1 = Xk −Bl(k)(Cl−1(k))

−1

δ = 100.
||Xk+1−Xk||

||Xk||
;

Xk ← Xk+1;
k = k + 1;

End

Remark 4 This two–stage algorithm makes jointly use of the two advantages,
offered by the Horner scheme and Newton algorithm, because it is nested by its
very nature, largely independent of the initial conditions and faster in execution,
due to the similarity or the conformity to Newton method.

Example 4 We are given the following matrix polynomial

AR(X) = A0X
3 +A1X

2 +A2X +A3,

where:

A0 =
(

1 0
0 1

)

, A1 =
(

12.8793 −0.4881
−2.0989 15.1207

)
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A2 =
(

56.5645 −8.7887
10.2686 55.9659

)

, A3 =
(

95.9331 −37.5549
160.9539 −6.0938

)

.

We apply the two stage Horner algorithm, and after 15 iterations we get:

X0 =
(

5.2114 4.8890
2.3159 6.2406

)

, X1 =
(

−3.0729 1.4058
−4.6569 1.0730

)

,

with

AR(X15) =
(

−0.0081 0.0106
0.0265 0.0145

)

.

3.2.4. Reformulation of the two stage block Horner method

After back substitution of the nested programmed scheme and accumulation we
obtain:

Bl(k) = AR(Xk) and

Cl−1(k) = lXk
l−1 + l − 1A1Xk

l−2 + ...+Al−1 = ∆(Xk) .

A variant of the two–stage block Horner algorithm can be obtained when
we use the compact forms of the matrices Bl(k) and Cl−1(k) in terms of AR

coefficients, which leads to Newton–like iterative process.

Algorithm:

X0 = initial guess
Enter small enough number η (tolerance error) and (δ = initial start) > η

Enter the set of m×m(A0;A1, ..., Al) matrices
k = 0
For i = 0 : 1 : l − 1

∆i = (l − i)Ai

End
While δ > η

AR(Xk) = A0X
l
k +A1X

l−1
k + ...+Al

∆(Xk) = ∆0X
l−1
k +∆1X

l−2
k + ...+∆l−1

Xk+1 = Xk −AR(Xk)(∆(Xk))
−1

δ = 100.
||Xk+1 −Xk||2
||Xk||2

Xk ← Xk+1

k← k + 1

End
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3.3. Combined algorithm and refinement

The proposed hybrid or two–stage block-Horner’s algorithm converges rapidly
and performs a recursive iteration, which is more efficient for digital software
programing implementation. On the other hand, without any prior knowledge
of the eigenvalues and eigenvectors of the matrix polynomial, the Horner’s al-
gorithm has been successfully utilized for finding the solvents, but this method
depends upon the initial guess to a limited degree (the initial value of Xk is ran-
domly chosen). Hence, in some cases it turns out to be very hard or impossible
to accommodate or somehow restrict the initial gauss. For this reason, in order
to avoid the strong dependence on the initial guess we proposed to initiate the
whole program by the Q.D. algorithm, which is numerically more stable and its
initial starting values are well defined and/or exactly determined.

The complete procedure starts with the Q.D. algorithm. It is then followed
by a refinement of the right factor by the Horner’s algorithm. After deflation
of the Q.D. program, Horner’s algorithm is again applied using the next Q

output from the Q.D. algorithm and the process is repeated until we are left
with a linear term. Of course, this process can be applied only to polynomial
matrices that satisfy the conditions of the theorem (i.e. complete right and left
factorization and complete dominance relation between solvents).

Remark 5 The same results are obtained as those that we have seen with the
preceding algorithms, but the mixed refined algorithm goes faster in execution,
with well defined initial conditions, and good convergence in much less time.

3.4. Comments

• For the Q.D. algorithm we have made the implicit assumption that an
LR factorization exists at each step. If such factorization cannot be per-
formed, this will lead to a breakdown of the algorithm.

• A numerical method for solving a given problem is said to be local if it
is based on a local (simpler) model of the problem around the solution.
From this definition, we can see that in order to use a local method, one
has to provide an initial approximation of the solution. This initial ap-
proximation can be provided by a global method. As shown in Dahimene
(2009), local methods are converging fast, while the global ones are quite
slow. This implies that a good strategy is to start solving the problem by
using a global method and then refine the solution by a local method.

• Of the advantages of the Q.D. algorithm the essential ones are: the out-
putting of the complete set of spectral factors at a time, well defined
starting point, determination of the complete set of spectral factors with-
out the need to know the spectrum of matrix polynomial and the global
nature. There is only one inconvenience, which is quite slow convergence.
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• The Horner’s algorithm brings in the local iterative nature, faster con-
vergence, nested programmable scheme, without the need of any prior
knowledge of the matrix polynomial, with only one inconvenience, which
is the strong dependence on the initial guess.

• Many research studies have been done on the spectral decomposition for
matrix polynomials to achieve complete factorization and reconstruction
of the block roots using a large variety of algebraic and geometric nu-
merical approaches, but (to our knowledge) nothing has been done for
block-Horner’s algorithm and/or block-Q.D. algorithm.

4. Application in control system design

4.1. Decoupling controller design

The dynamic modeling of physical linear time invariant multi–input–multi–
output systems results in high degree coupled vector differential equations with
matrix constant coefficients or a matrix transfer function, where, in this case,
the relationship between the input and output is a ratio of two matrix poly-
nomials, expressed as a right (or left) matrix fraction description (RMFD or
LMFD):

{

H(λ) = NR(λ)DR
−1(λ)

= DL
−1(λ)NL(λ).

(52)

where: NR, DR, NL and DL are matrix polynomials and λ stands for the

(

d

dt

)

operator. This fact has led to an active research effort in matrix polynomials
theory, see also Yaici and Hariche (2014a,b), Bekhiti et al. (2015).

Idea: our objective here is to decouple the MIMO dynamic systems. Let us
first factorize the numerator of the matrix polynomial N(λ) into a complete set
of spectral factors using one of the very well-known algorithms, then we place
those found block zeros by forcing the denominator to have exactly those ones
via state feedback control. Hence, the decoupling objectives are achieved.

Consider the square matrix transfer function:

H(λ) = N(λ)D−1(λ) =

(

k
∑

i=0

Niλ
i

)(

l
∑

i=0

Diλ
i

)−1

= (Nkλ
k + ...+N1λ+N0)(Dlλ

l + ...+D1λ+D0)
−1

where:
Dl = I is an m×m identity matrix and
Ni ∈ Rm×m, (i = 0, 1, ..., k)
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Di ∈ Rm×m, (i = 0, 1, ..., l), l > k.

Assume that N(λ) can be factorized into k block zeros and D(λ) can be factor-
ized into l block roots (using one of the proposed algorithms):

N(λ) = Nk(λI − Z1)...(λI − Zk) (53)

and

D(λ) = (λI −Q1)...(λI −Ql). (54)

We also know that the matrix transfer function can be written in terms of state
space matrices: H(λ) = C(λI −A)−1B. Now, via the use of state feedback the
control law becomes state dependent and can be rewritten as

u(t) = −K.X(t) + F.r(t).

Hence, we obtain the following closed loop system:

(H(λ))closed = C(λI −A+BK)−1BF = N(λ)D−1
d (λ)F,

where: Dd(λ) = (λI −Qd1)...(λI −Qdl) and Qdi are the desired spectral factors
to be placed,

H(λ)closed = N(λ)D−1
d (λ)F

H(λ)closed = Nk(λI − Z1)...(λI − Zk)(λI −Qdl)
−1...(λI −Qd1)

−1F (55)

where we choose:

Qd1 = NkJ1N
−1
k , ..., Qd(l−k) = NkJ(l−k)N

−1
k

Qd(l−k+1) = Z1, ..., Qdl = Zk

Ji = diag(λi1, ..., λim), F = (Nk)
−1 .

Now, by assigning those block roots, the system becomes decoupled and the
closed loop matrix transfer function becomes:

H(λ)closed = (λI − J1)
−1...(λI − Jl−k)

−1. (56)

Let us summarize the preceding procedure in the following algorithmic version,
meant to be more understandable and efficient for the use in linear multi-variable
control systems.

Algorithm:

• Assume that all states are available and measurable.
• Check the Block Observability and Block Controllability of a given state
space model of square dynamic system.
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• Construct the right numerator and right denominator matrix polynomials
using algorithms presented in Yaici and Hariche (2014).
• Decompose or factorize the numerator matrix polynomial into a complete
set of block spectral factors using the proposed method.
• Choose the k spectral factors of numerator as block roots for the denom-
inator and design the remaining ones in a diagonal form.
• Construct the desired matrix polynomial from those obtained block spec-
tral data, see Yaici and Hariche (2014b).
• Design the state feedback gain matrix in the controller form and then
transform it to the original base, see Shieh, Chang and McInnis (1986).
Here at this point we are ready to design SISO tracking regulators for each
of the input-output pairs, because the system is perfectly decoupled.

Example 5 Find the decoupling gain matrix via block structure assignment for
a turbogenerator system given by its state space representation (n = 6,m =
2, p = 2):











dX

dt
= AX +Bu

Y = CX +Du

with

A =

















8.2906 8.7757 5.8109 5.2892 4.4454 3.454
6.2659 0.1436 6.3715 6.9435 0.8540 9.4682
5.3875 2.9430 6.5127 2.1240 0.5734 5.2019
6.5051 1.7991 8.6462 5.4328 6.2945 9.5381
7.2663 9.2629 0.5595 7.0252 7.9618 0.7360
0.9449 0.6818 8.1686 9.5643 6.9119 2.0703

















, B =

















3.8751 3.9243
4.5709 1.3542
3.9128 1.1391
1.4777 1.6051
0.7592 4.1478
4.2396 4.1109

















C =
(

1.7120 0.8581 2.3888 1.3386 0.8371 2.7110
1.7155 2.0974 1.3248 1.3970 2.0261 2.7256

)

, D =

(

0 0

0 0

)

,

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rm×m, X ∈ Rn×1 is the state vector,
u ∈ Rm×1 is the input vector, and Y ∈ Rp×1 is the output vector.

The resulting dynamic model is a high degree coupled vector differential
equation with matrix constant coefficients or a matrix transfer function (λ-
description), given by:

H(λ) = C(λI − A)−1B +D = N(λ)D(λ)
−1

=

(

H11(λ) H12(λ)
H21(λ) H22(λ)

)

,
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where

H11(λ) =

(

34.01λ5 − 116.9λ4 − 221.2λ3 − 102.5λ2 − 1.955× 104λ− 2077

λ6 − 30.41λ5 − 45.33λ4 + 515.1λ3 − 1343λ2 + 1.805× 104λ+ 9102

)

H21(λ) =

(

36.58λ5 − 42.7λ4 + 696λ3 + 3295λ2 − 208.4λ+ 1.979× 104

λ6 − 30.41λ5 − 45.33λ4 + 515.1λ3 − 1343λ2 + 1.805× 104λ+ 9102

)

H12(λ) =

(

27.37λ5 − 53.9λ4 + 12.19λ3 − 767.4λ2 − 7918λ− 8267

λ6 − 30.41λ5 − 45.33λ4 + 515.1λ3 − 1343λ2 + 1.805× 104λ+ 9102

)

H22(λ) =

(

32.93λ5 − 66.88λ4 + 1.5λ3 − 1474λ2 − 8675λ− 1.675× 104

λ6 − 30.41λ5 − 45.33λ4 + 515.1λ3 − 1343λ2 + 1.805× 104λ+ 9102

)

.

In order to design the decoupling control of the turbogenerator system we
should firstly decompose the numerator and denominator matrix polynomials
N(λ) and D(λ) into a complete set of spectral factors and then check the gov-
ernability and estimability of the plant. The Block Controllability and Block
Observability matrices are defined by (see Yaici and Hariche, 2014a,b):

Wc =
(

B,AB, ..., Al−1B
)

and Wo =
(

CT ATCT · · · Aq−1TCT

)T

rank(Wc) = rank([B, AB, A2B]) = 6 and l =
n

m
= 3 ⇒ block con-

trollable system.

rank(Wo) = rank([CT , CTAT , CTA2T ]T ) = 6 and q =
n

p
= 3 ⇒

block observable system.

Wc and Wo are both of full rank and so the dynamic system is Block Control-
lable and Block Observable.

Now, we should construct the numerator and denominator matrix polynomi-
als from the state space data as follows (see Kailath and Li, 1980; Kucera, 1979,
and Solak, 1987):

{

D(λ) = D3λ
3 +D2λ

2 +D1λ+D0, D3 = I2
N(λ) = N3λ

3 +N2λ
2 +N1λ+N0, N3 = O2,

where:













D0

D1

D2













= −
[

B,AB,A2B
]−1

A3B =

















−37.0170 28.2888
−223.8750 −74.7887

34.8029 20.9798
−280.2609 −216.8345
−14.0378 −7.5183
−12.3898 −16.3740
















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







NT
0

NT
1

NT
2









T

=
[

CB,CAB,CA2B
]









D1 D2 D3

D2 D3 O2

D3 O2 O2









=

(

211.7886 61.4727 100.8960 74.4572 34.0105 27.3669
331.6250 199.1758 148.1818 120.4265 36.5764 32.9324

)

.

Let us decompose the numerator and denominator matrix polynomials and re-
construct their block roots (using the proposed decomposition algorithms):

N(λ) = N2(λI −Z1)(λI −Z2) and D(λ) = (λI −Q1)(λI −Q2)(λI −Q3).

The block spectral factors are approximately calculated with a residual normed
tolerance error given by:

εi =
‖Zi

∗‖ − ‖Zi‖

‖Zi
∗‖

i = 1, 2, and ξi =
‖Qi

∗‖ − ‖Qi‖

‖Qi
∗‖

i = 1, 2, 3.

Remark 6 The last block pole Q3 can be constructed using the synthetic long
division. The diagrams of Fig. 1 illustrate a comparison study between the pro-
posed algorithms in term of the convergence speed and residual normed tolerance
error.

The numerator block zeros are computed using the very well-known numer-
ical methods that can factorize matrix polynomial into a complete set of block
roots. Using the refined block Horner’s method, as illustrated in this paper, we
get:

N(Zi) = O2 ⇒ Z1 =
(

24.7235 23.1394
−27.4494 −24.9281

)

, Z2 =
(

−18.5711 −16.0841
16.1166 13.4353

)

.

The desired denominator is of third order, and is written down in the form:

Dd(λ) = Dd3λ
3 +Dd2λ

2 +Dd1λ+Dd0.

Using the prescribed decoupling algorithm we obtain:

F = N2
−1, J1 =

(

−1 0
0 −2

)

, Qd1 = N2
−1J1N2

−1, Qd2 = Z1, Qd3 = Z2

Dd(λ) = (λI −Qd1)(λI −Qd2)(λI −Qd3) = Iλ3 +Dd2λ
2 +Dd1λ+Dd0,

where:

Dd2 = −(Qd1 +Qd2 +Qd3) =
(

−13.5596 −14.6249
21.7809 21.8999

)

Dd1 = (Qd1Qd2 +Qd1Qd3 +Qd2Qd3) =
(

−126.4282 −121.5061
161.6710 152.4741

)

Dd0 = −(Qd1Qd2Qd3) =
(

−178.9732 −164.0512
223.2851 202.6227

)

.
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Figure 1. The residual error norm comparison study

The state feedback gain matrix of the block controller form is obtained by,
see Tsay and Shieh (1983) and Bekhiti et al. (2015):

Kci = Ddi −Di With i = 0, 1, 2 and Kc = [Kc0,Kc1,Kc2].

Now, let us go back to the original base by the following similarity transforma-
tion:

K = KcTc and Tc =





[

B, AB, A2B
]





D1 D2 D3

D2 D3 O2

D3 O2 O2









−1

K =
(

−0.7616 −3.2690 3.5737 −0.0716 −2.3462 1.4801
3.0439 5.4047 −2.3853 2.4117 4.2560 0.0494

)

.
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The new state space representation of the decoupled system after applying the
state feedback is:

Ad = (A−BK), Bd = BF, and Cd = C

H(λ)closed = C(λI −A+BK)−1BF

= N(λ)D−1
d (λ)F =







1

λ+ 1
0

0
1

λ+ 2






.

Now we can design a SISO PID controller for each input–output pair, using
the known tuning methods, for example the Ziegler–Nichols method, or any
other one.
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Figure 2. The trajectory tracking control of the decoupled system

From the obtained simulation results, as shown in Fig. 2, we see that the
controlled plant tracks its reference trajectory with very small error, no over-
shooting, and no static error appears at both transient and steady state regimes,
meaning that both tracking and regulation objectives are being attained by the
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procedure. Finally, from the error signal, the BIBO stability is guaranteed,
while the internal stability is not, and this is not surprising or new to us due
to the cancellation phenomenon in the designed controller. Hence, from the
simulation results we deduce that the block zeros are well computed and the
numerator matrix polynomial N(λ) is perfectly decomposed using the proposed
procedure.

4.2. Suggestions for further research

The results obtained during this research work generated many questions and
problems, whose potential solutions are to be explored:

• Devising other globalization techniques for the block-Horner’s algorithm
to avoid the local restriction and the problem of initial guess, arriving at
a very fast global nested program. This involves also exploring and ex-
tending other scalar numerical methods to factorize matrix polynomials.

• Both of the block-Horner’s algorithm, and the block-Q.D. algorithm, as
used in our work, converge to factors of a matrix polynomial. By using the
defined similarity transformations, we can derive the solvents. However,
it would be convenient to have a global algorithm that converges rapidly
and directly to all solvents.

• If someE column in the Q.D. tableau converges, this implies that there ex-
ists a factorization of the matrix polynomial that splits the spectrum into
a dominant set and a dominated one. If the system under consideration
is a discrete–time system, we know that the largest modulus latent roots
have the preponderant effect on the dynamic properties of the system. In
such case, the Q.D. algorithm can become a tool for system reduction
(using the dominant mode concept).

• The computational procedure for finding the solvents of a matrix polyno-
mial with repeated block roots (solvents) and/or spectral factors needs to
be investigated further.

5. Conclusion

In this paper we have introduced new numerical approaches for determining the
complete sets of spectral factors and solvents of a monic matrix polynomial. For
avoiding the initial guess we have proposed a systematic method for the block-
Horner’s algorithm via a refinement of the block-Q.D. algorithm. At least three
advantages are offered by the proposed technique: (i) an algorithm with global
nature is obtained; hence there is no initial-guess problem during the whole
procedure, (ii) high speed convergence to each solution is obtained and only a
few iterations are required; (iii) via the help of refinement and direct cascad-
ing, the algorithms are easily coupled together and the whole scheme is suitable
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for digital software processor and can easily be computerized. The obtained
solvents can be considered as a useful tool for carrying out the block partial
fraction expansion for the inverse of a matrix polynomial. Those partial frac-
tions are, of course, matrix transfer functions of reduced order linear systems,
such that the realization of them leads to block diagonal (block-decoupling)
or parallel decomposed multivariable linear time invariant systems. For such
systems analysis and design can be easily performed, as the dynamic proper-
ties of MIMO systems depend on their block pole of its characteristic matrix
polynomial. Therefore, they can be used as tools for block-pole placement,
block-system identification and block-model order reduction. In addition, the
proposed method can be employed to carry out the block spectral factorization
of a matrix polynomial for problems in optimal control, filtering and estimation.

Finally, for the purpose of relocating block roots of matrix polynomials via
latent structure assignment, a new algorithm has been developed and the results
will be presented very soon. Furthermore, another algorithm for block order
reduction based on solvent and block moment matching is under realization.
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