Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, the computational simulation of the workflow in the primary combustion chamber flame tube of the afterburning turbofan jet engine (ATJE) on the tactical military aircraft was carried out. The geometric model of a flame tube was created and adapted to perform the interrelated calculation of the thermal and stress-strain behaviour of the walls of the flame tube influenced by the operational loads during the computational simulation of the workflow. Quantitative and qualitative analysis of the simulation results was conducted, and the connection between the peculiarities of the workflow and the characteristic damage of the flame tubes, detected during the operation, was established. The possibility of using modern CAD/CAE systems to solve the scientific tasks towards maximizing the cycle life potential of the main and primarily important components of the ATJE on the assessment basis of their damage exhaustion degree was determined.
Czasopismo
Rocznik
Tom
Strony
167--176
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
- State Research Institute of Aviation, Kyiv, Ukraine
autor
- State Research Institute of Aviation, Kyiv, Ukraine
autor
- State Research Institute of Aviation, Kyiv, Ukraine
autor
- State Research Institute of Aviation, Kyiv, Ukraine
Bibliografia
- 1. Arthur Lefebvre.: Processes in the combustion chambers of gas turbine engines: translated from English. Moscow: Mir, 1986. 246 p. [in Russian].
- 2. ANSYS fluent theory guide. Release 14.0. ANSYS Inc. 2011. 794 p. [in English].
- 3. Aviation and rocket-space technology. Bulletin of the Ufa State Aviation Technical University V.16. No. 2 (47). Ufa: UGATU, 2012. pp 98 – 105. [in Russian].
- 4. Bakulev V.I. et. al. Theory, calculation and design of aircraft engines and power plants. Moscow: MAI, 2003. 688 p. [in Russian].
- 5. Boguslaev A.V. et. al.: Progressive technologies for simulation, optimization and intelligent automation of the stages of the life cycle of aircraft engines. Zaporozhye: Motor Sich JSC, 2009. 468 p. [in Russian].
- 6. Bolshagin V.I., Sarkisov A.A.: GTE combustion chambers. Ufa: S. Ordzhonikidze UAI, 1982. 42 p. [in Russian].
- 7. F. Wang, Y. Huang and T. Deng: Gas Turbine Combustor Simulation With Various Turbulent Combustion Models. ASME Turbo Expo 2009: Power for Land, Sea, and Air June 8–12, 2009 Orlando, Florida, USA. pp 155-165. [in English].
- 8. Ferziger, Joel H.: Computational Methods for Fluid Dynamics / Joel H. Ferziger / Milovan Perit. - 3., rev. ed. Springer, 2002. [in English].
- 9. Kostochkin V.V. Reliability of aircraft engines and power plants. Moscow: Mashinostroenie, 2nd ed., 1988. 272 p. [in Russian].
- 10. Lukachev S.V., Abrashkin V.Yu., Lanskij A.M., Matvejev S.G.: Correlation-regression model for estimating the circumferential non-uniformity of the gas temperature field at the outlet of the combustion chambers of the small-sized gas turbine engines. Bulletin of the Academician S.P. Korolev Samara State Aerospace University. (National Research University). No. 3 (41), 2013. pp 118–124. [in Russian].
- 11. Modest.: Radiative heat transfer. Third edition. The University of California at Merced. 2013. 867p. [in English].
- 12. Patankar, Suhas V.: Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation. 1980. 200p. [in English].
- 13. Peters N.: Turbulent Combustion. Cambridge monographs on mechanics. Cambridge University Press, 2000. [in English].
- 14. Troshchenko V.T., Pokrovskij V.V., Prokopenko A.V.: Crack resistance of materials under cyclic loading. Kyiv: Nauk. Dumka, 1987. 256 p. [in Russian].
- 15. Wilcox D. C.: Turbulence modeling for CFD, 3-rd ed. DCW Industries.2006. 536 p. [in English].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96362488-33d9-40d3-9eab-9f1e8b2d4e7b