PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Role of maceral groups in coal beneficiation : A short review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Macerals are the basic constituents of coal that can be distinguished and identified under the microscope. Depending on the difference in optical properties, the macerals are divided into four maceral groups, including liptinite, vitrinite, huminite and inertinite. These maceral groups not only affect coal mining and utilization but also play different roles in coal beneficiation. According to the different properties of maceral groups, they can be separated (or enriched) to provide high-quality raw materials for the coal industry. This review briefly introduces the international maceral classification system and reviews in detail the role of maceral groups in coal beneficiation combined with their properties.
Słowa kluczowe
Rocznik
Strony
art. no. 183765
Opis fizyczny
Bibliogr. 83 poz., rys., tab., wykr.
Twórcy
autor
  • China Coal (Tianjin) Underground Engineering Intelligent Research Institute Co., LTD., Tianjin 300121, China
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
autor
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
autor
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
autor
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
Bibliografia
  • AMMOSOV, I., EREMIN, I., SUKHENKO, S., OSHURKOVA, I., 1959. Calculation of coking charges on the basis of petrographic characteristics of coals. Koks. Khim. , 2, 9–12.
  • ANON., 1998. New vitrinite classification (ICCP system 1994). Fuel. 77, 349–358.
  • ARNOLD, B. J., APLAN, F. F., 1989. The hydrophobicity of coal macerals. Fuel, 68, 651–658.
  • BAI, X. F., 2017. A brief history and application of coal petrography. Coal. Qual. Technol., S1, 1–6.
  • BARNWAL, J. P., PATIL, D. D., RAO, T. C., KAWATRA, S. K., 2000. Enrichment of coal macerals using froth flotation. Miner. Metall. Process., 17, 56–61.
  • BARRAZA, J., PINERES, J., 2005. A pilot-scale flotation column to produce beneficiated coal fractions having high concentration of vitrinite maceral. Fuel., 84, 1879–1883.
  • BARRAZA, J., PORTILLA, A., PINERES, J., 2011. Direct liquefaction of vitrinite concentrates obtained by column flotation. Fuel. Process. Technol., 92, 776–779.
  • BUJNOWSKA, B., 1985. Studies on floatability of petrographic constituents of subbituminous coal. Coal. Prep., 1, 169–188.
  • CARDOTT, B. J., CURTIS, M. E., 2018. Identification and nanoporosity of macerals in coal by scanning electron microscopy. Int. J. Coal. Geol., 190, 205–217.
  • CHANDRA, D., TECHMULLER, R., 1976. Stach’s textbook of coal petrology.
  • CHANG, J., LI, Z., FU Y., 2021. Upgrading and quality-classification of inertinite-rich coal from Western China based on maceral separation. Powder. Technol., 382, 48–59.
  • CHEN, Y., MASTALERZ, M., SCHIMMELMANN, A., 2012. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy. Int. J. Coal. Geol., 104, 22–33.
  • COMMITTEE, I., ICCP, O. P., 2001. The new inertinite classification ( ICCP System 1994 ). 80, 459–471
  • DING, L. P., 2009. Investigation of bituminous coal hydrophobicity and its influence on flotation. Energ. Fuel., 23, 5536–5543.
  • DYRKACZ, G. R., HORWITZ, E. P., 1982. Separation of coal macerals. Fuel., 61, 3–12.
  • ERGUN, S., TIENSUU, V. H., 1959. Interpretation of the intensities of X-rays scattered by coals. Fuel., 38, 64–78.
  • FU, Y. H., LI, Z., ZHOU, A. N., ZHU, Z. Q., YANG, C., LIU, L. J., YU, W., QU, J. Z., 2017. Liberation characterization of minerals and macerals in coal by using MLA. J. China. Univ. Min. Technol., 46, 1357–1363.
  • GOLAB, A., WARD, C. R., PERMANA, A., LENNOX, P., BOTHA, P., 2013. High-resolution three-dimensional imaging of coal using microfocus X-ray computed tomography, with special reference to modes of mineral occurrence. Int. J. Coal. Geol., 113, 97–108.
  • HATCHER, P. G., CLIFFORD, D. J., 1997. The organic geochemistry of coal: From plant materials to coal. Org. Geochem., 27, 251–257.
  • HATTINGH, B. B., EVERSON, R. C., NEOMAGUS, H. W. J. P., BUNT, J. R., vanNIEKERK, D., JORDAAN, J. H. L., MATHEWS, J. P., 2013. Elucidation of the structural and molecular properties of typical South African coals. Energ. Fuel., 27, 3161–3172.
  • HE, X., SUN H., CHEN, X. W., ZHAO, B., ZHANG, X. X., KOMARNENI, S., 2018a, Charging mechanism analysis of macerals during triboelectrostatic enrichment process: Insights from relative dielectric constant, specific resistivity and X-ray diffraction. Fuel., 225, 533–541.
  • HE, X., SUN H., MA M. Y., ZHANG, X. X., WANG, W. F., 2021. Enrichment characteristics of macerals during triboelectrostatic separation in the view of surface microstructure, pore distribution, and typical electrical parameters. ACS. Omega., 6, 18509–18517.
  • HE, X., SUN H., CHEN, X. W., ZHAO, B., ZHANG, X. X., KOMARNENI, S., 2018b. Tribocharging of macerals with various materials: Role of surface oxygen-containing groups and potential difference of macerals. Fuel., 233, 759–768.
  • HE X., ZHANG, X., JIAO, Y., ZHU, J. S., CHEN, X. W., LI, C. Y., LI, H. S., 2017. Complementary analyses of infrared transmission and diffuse reflection spectra of macerals in low-rank coal and application in triboelectrostatic enrichment of active maceral. Fuel. 192, 93–101.
  • HOLUSZKO, M. E., MASTALERZ, M. D., 2015. Coal macerals chemistry and its implications for selectivity in coal floatability. Int. J. Coal. Prep. Util., 35, 99–110.
  • HONAKER, R. Q., MOHANTY, M. K., CRELLING, J. C., 1996. Coal maceral separation using column flotation. Miner. Eng., 9, 449–464.
  • HOU, C. L., JIANG, B., LIU, H. W., SONG, Y., XU, S. C., 2020. The differences of nanoscale mechanical properties among coal maceral groups. J. Nat. Gas. Sci. Eng. 80.
  • HOWER, J. C., KUEHN, K. W., PAREKH, B. K., PETERS, W. J., 2000. Maceral and microlithotype beneficiation in column flotation at the Powell Mountain Coal Mayflower Preparation Plant, Lee County, Virginia. Fuel. Process. Technol., 67, 23–33.
  • HUSSAIN, S. A., DEMIRCI, Ş., OZBAYOGLU, G., 1996. Zeta potential measurements on three clays from Turkey and effects of clays on coal flotation. J. Colloid. Interface. Sci., 184, 535–541.
  • ICCP ,1998. The new vitrinite classification ( ICCP System 1994 ). Fuel., 77, 349–358
  • JORJANI, E., ESMAEILI, S., KHORAMI, M. T., 2013. The effect of particle size on coal maceral group’s separation using flotation. Fuel., 114, 10–15.
  • JORJANI, E., HOWER, J. C., CHELGANI, S. C., SHIRAZI, M. A., 2008.Studies of relationship between petrography and elemental analysis with grindability for Kentucky coals. Fuel, 87(6), 707-713.
  • KEBOLETSE, K. P., NTULI, F., OLADIJO, O. P., 2021. Influence of coal properties on coal conversion processes-coal carbonization, carbon fiber production, gasification and liquefaction technologies: a review. Int. J. Coal. Sci. Technol. 8, 817–843.
  • KOPPARTHI, P., SINGH, R., NAG, D., MUKHERJEE, A. K., 2018. Vitrinite maceral separation using column flotation. Int. J. Coal. Prep. Util., 38, 13–29.
  • LI, J., LIU, D., YAO, Y., CAI, Y., 2013. Influencing factors of the Young’s modulus of anthracite coals. Appl. Mech. Mater., 295–298, 2762–2765.
  • LI, Q., CHEN, J., HE, J. J., 2017. Physical properties, vitrinite reflectance, and microstructure of coal, Taiyuan Formation, Qinshui Basin, China. Appl. Geophys., 14, 480–491.
  • LI, Y., XIA, W., ZHANG, N., 2021. Efficiency and mechanism analysis of the flotation of anthracite coal using soybean oil as an alternative sustainable collector. Energy. Source. Part. A., 43, 2210–2217.
  • MAN, C. K., JACOBS, J., GIBBINS, J. R., 1998. Selective maceral enrichment during grinding and effect of particle size on coal devolatilisation yields. Fuel. Process. Technol., 56(3), 215-227.
  • MEN, D. P., ZHANG, L., LIU, W. L., 2015. Decomposition and separation characteristics of low-rank bituminous coal and its separation. Journal of China Coal Society, 2015(S2), 7.
  • MISHRA, V., SING, K. N., 2017. Microstructural relation of macerals with mineral matter in coals from Ib valley and Umaria, Son-Mahanadi basin, India. Int. J. Coal. Sci. Technol., 4, 191–197.
  • MOROENG, O. M., MHUKA, V., NINDI, M. M., ROBERTS, R. M., 2019, Comparative study of a vitrinite-rich and an inertinite-rich Witbank coal (South Africa) using pyrolysis-gas chromatography. Int. J. Coal. Sci. Technol., 6, 621–632.
  • NAG, D., DAS, B., SING, R., SRIAMOJU, S., MESHRAM, A., DASH, P. S., 2022, Effect of grinding behavior on liberation of coal macerals. ISIJ. Int., 62, 99–103.
  • OFORI, P., FIRTH, B., OBRIEN, G., MCNALLY, C., NGUYEN, A. V., 2010, Assessing the hydrophobicity of petrographically heterogeneous coal surfaces. Energ. Fuel. 24, 5965–5971.
  • PICKEL, W., KUS, J., FLORES, D., KALAITZIDIS, S., CHRISTANIS, K., CARDOTT, B. J., MISZ-KENNAN, M., RODRIGUES, S., HENTSCHEL, A., HAMOR-VIDO, M., 2017. Classification of liptinite – ICCP System 1994. Int. J. Coal. Geol., 169, 40–61.
  • PING, A., PENG, Y. L., XIE, G. Y., WANG, M. D., XIA, W. C., 2022, Enhancement of dewatering performance of vitrinite-rich and inertinite-rich coals by surfactants: Experiment and simulation. Fuel., 318, 126571.
  • PING, A., XIA, W. C., PENG, Y. L., XIE, G. Y., 2020. Construction of bituminous coal vitrinite and inertinite molecular assisted by 13C NMR, FTIR and XPS. J. Mol. Struct., 1222:128959.
  • PING, A., XIA, W. C., PENG, Y. L., XIE, G. Y., 2021. Comparative filtration and dewatering behavior of vitrinite and inertinite of bituminous coal: Experiment and simulation study. Int. J. Min. Sci. Technol. 31, 233–240.
  • ROBERTS, M. J., EVERSON, R. C., NEOMAGUS, H. W. J. P., VANNIEKERK, D., MATHEWS, J. P., BRANKEN, D. J., 2015. Influence of maceral composition on the structure, properties and behaviour of chars derived from South African coals. Fuel., 142:9–20.
  • SAHOO, S. K., SURESH, N., VARMA, A. K. 2020. Flotation production of vitrinite maceral concentrate and its optimization using response surface approach. Int. J. Coal. Prep. Util., 40, 155–174.
  • SHU, G., ZHANG, Y. 2014. Research on the maceral characteristics of Shenhua coal and efficient and directional direct coal liquefaction technology. Int. J. Coal. Sci. Technol., 1, 46–55.
  • SHU, X., WANG, Z., XU, J., 2002. Separation and preparation of macerals in Shenfu coals by flotation. Fuel., 81, 495–501.
  • SRIRAMOJU, S. K., RASHMI., SURESH, A., DASH, P. S., 2019, Generation of low ash fine clean coal powder by autogenous grinding process powder technology. Powder. Technol., 342, 67–72.
  • SRIRAMOJU, S. K., SINGH, R., SENGUPTA, M., AKHTER, S., DASH, P. S., 2021. Selective screening of coal to improve the washability characteristics at different levels of size reduction. Int. J. Coal. Prep. Util., 42, 3070-3089.
  • SYKOROVA, I., PICKEL, W., CHRISTANIS, K., WOLF, M., TAYLOR, G. H., FLORES, D., 2005. Classification of huminite - ICCP System 1994. Int. J. Coal. Geol. 62, 85–106.
  • TAO, Y. J., ZHAO, Y. N., XIAN Y. S., SHI, Z. X., WANG, Y. P., ZHANG, W. C, 2020. Study on separation characteristics and enhanced gravity separation of low-rank bituminous coal.
  • TRIMBLE, A. S., HOWER, J. C., 2003. Studies of the relationship between coal petrology and grinding properties. Int. J. Coal. Geol., 54(3), 253-260.
  • VILASO-CADRE, J. E., AVILA-MARQUEZ, D. M., REYES-DOMINGUES, I. A., BLANCO-FLORES, A., GUTIERREZ-CASTANEDA, E. J., 2021.Coal flotation in a low Coal flotation in a low-rank carbonaceous mineral using 3-phenyl-1-pro-panol as a collector reagent. Fuel. 304, 121363.
  • WANG, A., CAO, D., WEI, Y., LIU, Z., 2020. Macromolecular structure controlling micro mechanical properties of vitrinite and inertinite in tectonically deformed coals-a case study in Fengfeng coal mine of taihangshan fault zone (North china). Energies., 13, 24.
  • WANG, D., PENG, Z. Y., WANG, J., LIANG, L. T., TU, C. Y., ZHANG, Q., HUANG, W., 2021. Study on pyrolysis behavior of the coal fractions based on macro maceral separation. Fuel., 305, 121572.
  • WANG, J., DU, J., CHANG, L., XIE, K., 2010. Study on the structure and pyrolysis characteristics of Chinese western coals. Fuel. Process. Technol., 91, 430–433.
  • WARD, C. R. 2016. Analysis, origin and significance of mineral matter in coal: An updated review. Int. J. Coal. Geol., 165, 1–27.
  • XIA, W., LI, Y., NGUYEN, A. V., 2018. Improving coal flotation using the mixture of candle soot and hydrocarbon oil as a novel flotation collector. J. Clean. Prod., 195, 1183–1189.
  • XIAN, Y. S., TAO, Y. J., MA, F. Y., 2021a. Study on separation of low-rank coal macerals in enhanced gravity field. Int. J. Coal. Prep. Util., 42, 3103-3116.
  • XIAN, Y., TAO, Y., MA, F., ZHOU, Y., 2021b. The study of enhanced gravity concentrator for maceral enrichment of low-rank coal with heavy medium. Int. J. Coal. Prep. Util., 42, 3777-3793.
  • YAO, Y.B., LIU, D. M., CHE, Y., TANG, D. Z., TANG, S. H., HUANG, W. H., 2009. Non-destructive characterization of coal samples from China using microfocus X-ray computed tomography. Int. J. Coal. Geol., 80, 113–123.
  • XIAN, Y. S., TAO, Y. J., MA, F. Y., ZHANG, X. B., 2021. Effects of rotary triboelectrification technology on macerals separation for low-rank coal. Int. J. Coal. Prep. Util., 42, 3249-3263.
  • ZHANG, J., TAO, Y. J., ZHANG, W. C., SHI, Z. X., WANG, Y. P., ZHAO, Y. N., 2020. Research on the macerals dissociation characteristics of Shenhua low-rank coal. Energ. Source. Part. A., 42, 882–897.
  • ZHANG, L., HOWER, J. C., HONAKER, R. Q., LIU, W., MENG, D., 2015. Flotation rates and zeta potentials of maceral concentrates of bituminous coals. Miner. Metall. Process., 32, 129–137.
  • ZHANG, L., HOWER, J. C., LIU, W., MEN, D., 2017. Maceral Liberation and Distribution of Bituminous Coal for Predicting Maceral-Separation Performance. Int. J. Coal. Prep. Util., 37, 237–251.
  • ZHANG, M., FU, X. H., DUAN, C. C., LI, Y. S. 2020. Influencing factor analysis of the coal matrix compressibility of middle-high rank coals. J. Nat. Gas. Sci. Eng., 81, 103462
  • ZHANG, S. Y., LU, J. F., ZHANG, J. S., YUE, G. X., 2008. Effect of pyrolysis intensity on the reactivity of coal char. Energ. Fuel., 22, 3213–3221.
  • ZHANG, X., TAO, Y., TAO, D., MA, F. Y., 2021a. Experimental study on the macerals enrichment of low-rank coal by rotary triboelectric separator. Part. Sci. Technol., 40, 500–511.
  • ZHANG, Y. X., MENG, Y. J., HAO, P. Y., SHANG, Y. J., FU, X. Y., 2021b. Brittleness index of high-rank coal reservoir and its influencing factors in mabidong block, Qinshui basin, China. Geofluids., 2021, 5577740.
  • ZHANG, Y., ZHANG, X. Q., ZHONG, Q. F., HU, S. R., MATHEWS, J. P., 2019. Structural differences of spontaneous combustion proneinertinite-rich chinese lignite coals: insights from XRD, solid-state 13 C NMR, LDIMS, and HRTEM. Energ. Fuel., 33, 4575–4584.
  • FAN, Z. Q., 2017. Coal petrology study status quo and prospect in China. Coal. Geol. China. 29, 15–19.
  • ZHAO, W., LI, Z., YANG, Z., ZHOU, A., 2018. Electro-flotation separation of coal macerals and its electro-coagulation characteristics. Journal. China. Univ. Min. Technol., 47, 1104–1112.
  • Zhao W, Yang F, Li Y, et al (2011a) Influence of microwave treatment under a hydrogen or methane atmosphere on the flotability of the macerals in Shenfu coals. Min Sci Technol 21, 761–766.
  • Zhao W, Yang ZY, Li Z, Zhou AN (2017) Influence of electrochemical treatment on surface structure and flotability of Shenmu coal macerals. Ranliao Huaxue Xuebao/Journal Fuel Chem Technol 45, 400–407
  • ZHAO, W., ZHOU, A.N., LI Y. G., 2011b. The influence of microwave-assisted grinding on coal macerals dissociation. Journal. China. Coal. Soc., 36, 140–144.
  • ZHENG, K. H., XIA, W. C., WANG, R.R., Li, Y.J., ZHANG, W. J., 2021. Synergistic effects of Triton X-100 and kerosene on the flotation removal of unburned carbon from fly ash. Colloid. Surface. A., 622, 126668.
  • ZOU, H., WU, C. F., PAN, J. N., WANG, Z. Z., NIU, Q. H., DU, M.Y., 2021. Research on molecular structure characteristics of vitrinite and inertinite from bituminous coal with FTIR, micro-raman, and XRD spectroscopy. Energ. Fuel., 35, 1322–1335.
  • ZHU, C., DU. M. L.,YANG, R., ZHU, C. H., LIU, L., 2020. Study on maceral and dissociation characteristics of spore-rich coal in Shanxi Formation of Yanzishan Mine. Applied. Chemical. Industry., 2020, 49(1), 5.
  • ZHU, Z. Q., 2019. Study on low density cyclone separation and stability based on coal macerals enrichment. China university of mining and technology, Xuzhou.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-963529c4-536b-41e1-a7d4-7bb212c0a524
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.