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Realization of controlled NOT quantum gate via control

of a two spin system
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Abstract. Physical realization of controlled NOT quantum gate is addressed as a control problem for the system of two interacting spins.

The control is carried out by magnetic pulses acting on the spins. The shapes of the appropriate magnetic pulses are computed.

Key words: quantum gates control, CNOT gate, quantum control.

1. Introduction

Quantum mechanics can be used to process information [1–4].

The unit of quantum information is called a qubit (quantum

bit), quantum counterpart of the classical bit. Physically, qubit

is a two level quantum system. There are many examples of

such systems, e.g., horizontal and vertical polarization of pho-

ton, two states of the half spin particle, or two chosen states

of an atom (denoted as ground state and excited state).

In the paper the problem of quantum CNOT gate is ad-

dressed. The problem is casted as a control task, and is a

particular example of a quantum control problem. Quantum

control theory undergoes rapid development and is of inter-

est to different communities ranging from physics, applied

mathematics, chemistry, and quantum computing [5]. There

is a plethora of applications of quantum control, mainly in

physics and chemistry, an interested reader is referred to many

books and survey papers, e.g., [6–15]. One of the key issues in

classical control theory is controllability of the system under

consideration, the quantum systems are not exception in this

regard. One is interested, whether a quantum system can be

driven to a desired state, by an appropriate control input. The

practical importance of this problem is clearly made apparent

by, e.g., [16–18]. However, many definitions of the quantum

system controllability have been proposed, among them, pure

state controllability, complete controllability, eigenstate con-

trollability and kinematic controllability [16–22]. The major

contribution of this paper is demonstration, that in the particu-

lar case of CNOT gate realized as a system of two interacting

spins, the control can be relatively easy computed numerical-

ly, by a simple trial and failure method. Although the case is

particular it is of importance since CNOT gate enables quan-

tum entanglement generation [1–4].

The paper is organized as follows. Section 2 introduces,

mainly for further reference, some basic notions, such as quan-

tum states, quantum bit (qubit), or Bloch sphere. Section 3

contains the preliminaries such as quantum measurements,

quantum entanglement, quantum gates and the link between

binary quantum gates and entanglement generation. Section 4

discusses the realization of CNOT gate as a system of two in-

teracting spins controlled by magnetic pulses. The Subsec. 4.1

recapitulates results already known from the literature [4]. The

Subsec. 4.1 is, to the best knowledge of authors, the original

contribution of the paper. It generalizes the results of Sub-

sec. 4.1 onto the case of time-dependent Hamiltonian and

time-varying pulses pulses (in contrast to the constant values

of magnetic field applied to the time-independent Hamiltoni-

an case discussed in Subsec. 4.1. The Subsec. 4.3 contains

the results of the numerical computations and simulations in-

volving the computed magnetic pulses).

2. Notation

Throughout the paper we use standard Dirac notation [23],

for more information on the concepts and notions presented

in this section one is referred to, e.g., [1, 3, 4].

2.1. Qubit. A classical bit is a system which can assume

two different states, representing 0 and 1. The only opera-

tions that can be done on that system are identity (0 7→ 0,

1 7→ 1) and negation NOT (0 7→ 1, 1 7→ 0). A quantum bit,

qubit is a two level quantum system, described by two di-

mensional complex Hilbert space. Two mutually orthogonal

vectors from that space

|0〉 ≡
[
1 0

]T

, |1〉 ≡
[
0 1

]T

(1)

can be used to represent the values 0 and 1 of a classical bit.

The two states (1) constitute a computational basis.

State vectors are defined up to global phase factor (which

has no physical meaning), thus, making use of the superpo-

sition principle, one can write a general state of the qubit in

the following form

|ψ〉 = cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉 , (2)

where θ and φ are real parameters, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π.

From (2), one can see that there exist infinitely many states

of a qubit, in fact, their set is of the continuum cardinality.
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According to [3], a two level quantum system can be used

as a qubit if it satisfies the following conditions:

1. It can be prepared in an desired, uniquely defined state,

e.g., |0〉.
2. An arbitrary state of the qubit can be transformed to

an arbitrary other state by unitary transformation.

3. The state of the qubit can be measured in computa-

tional basis {|0〉 , |1〉}, i.e., it is possible to measure a

qubit along the z direction. The Pauli Ẑ operator corre-

sponds to this measurement, it has the eigenstates |0〉
and |1〉. The measurement result of the qubit in the

state (2) is 0 or 1, with the probability, respectively,

p0 = |〈0|ψ〉|2 = cos2
θ

2
,

p1 = |〈1|ψ〉|2 = sin2 θ

2
.

(3)

2.2. Bloch sphere and Bloch vector. The state of the

qubit (2) can be represented by a point on the sphere of unit

radius, the so called Bloch sphere, thus any given state of

a qubit can be represented by a unitary Bloch vector. The

Bloch vector can be defined in the spherical coordinates, if

this is the case, the Bloch vector corresponding to the state

(2) is given by zenithal angle θ and azimuthal angle ϕ. The

Bloch vector can also be given by his x, y, z coordinates in

the R
3 space (in which the Bloch sphere is submerged), then

x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ.

3. Preliminaries

3.1. Qubit state measurement. The state |ψ〉 = α |0〉+β |1〉
of a qubit can be measured up to the arbitrary precision, as-

suming an appropriate number of the qubits prepared in this

state is available. See, e.g., [3] for more details.

3.2. Two qubit states and quantum entanglement. A sys-

tem composed of two subsystems, each being a qubit, is de-

scribed by tensor product of two qubits. If the Hilbert space

H1 is associated with subsystem 1 and the Hilbert space H2

is associated with subsystem 2, than the space H1 ⊗H2 cor-

responds to the composite system.

The standard basis for a two qubit system is

{|00〉 , |01〉 , |10〉 , |11〉}, and the following convention is used

|ab〉 ≡ |a〉 |b〉 ≡ |a〉 ⊗ |b〉 .
The generalization of the above reasoning onto the multi qubit

systems is strightforward.

Quantum entanglement, one of the most interesting phe-

nomena in quantum mechanics, can be observed already for

two qubit states. Consider the space H = H1 ⊗H2 which is

tensor product of H1 and H2, as well as appropriate states

belonging to these spaces |ψ〉 ∈ H, |α〉 ∈ H1, |β〉 ∈ H2.

Taking into account that a standard basis of the space H is

{|00〉 , |01〉 , |10〉 , |11〉}, whereas the standard basis for the

space H1 and H2 is {|0〉 , |1〉}, one can write

|ψ〉 = ψ1 |00〉 + ψ2 |01〉 + ψ3 |10〉 + ψ4 |11〉 ,
|α〉 = α1 |0〉 + α2 |1〉 , |β〉 = β1 |0〉 + β2 |1〉 .

Not every state |ψ〉 ∈ H = H1 ⊗ H2 can be written as a

tensor product of the states |α〉 ∈ H1 i |β〉 ∈ H2

|ψ〉 = |α〉⊗ |β〉 = (α0 |0〉 + α1 |1〉)⊗ (β0 |0〉 + β1 |1〉) . (4)

The states |ψ〉 ∈ H = H1 ⊗ H2 that cannot be written in

the form of the tensor product (4), are called entangled (in

contrast to the separable states). Quantum entanglement does

not have an analogue in classical physics.

3.3. Unary quantum gates. Unary gates operate on single

qubits. Operations on a qubit must preserve normalization of

its state, thus they are described by unitary matrices of size

2× 2. One can show that all these operations can be realized

with use of two gates, i.e., the Hadamard gate and phase-shift

gate [1, 3].

The X̂, Ŷ and Ẑ gates are defined as X̂ |a〉 = |1 ⊕ a〉,
Ŷ |a〉 = i(−1)a |1 ⊕ a〉, Ẑ |a〉 = (−1)a |a〉, where a ∈ {0, 1},

and ⊕ denotes modulo 2 addition, thus X̂(α |0〉 + β |1〉) =

α |1〉 + β |0〉, Ŷ(α |0〉 + β |1〉) = −i(β |0〉 − α |1〉) and

Ẑ(α |0〉 + β |1〉) = α |0〉 − β |1〉. In the basis {|0〉 , |1〉} the

gates are given by the matrices

X̂ =

[
0 1
1 0

]
, Ŷ =

[
0 −i
i 0

]
, Ẑ =

[
1 0
0 −1

]
.

The Hadamard gate is defined as Ĥ |a〉 = 1√
2
((−1)a |a〉 +

|1 ⊕ a〉) where a ∈ {0, 1}. Ĥ is hermitian, Ĥ2 = Î and

Ĥ−1 = Ĥ. In the basis {|0〉 , |1〉} the gate is given by the

matrix

Ĥ =
1√
2

[
1 1
1 −1

]
. (5)

Phase-shift gate is defined as R̂z(δ) |a〉 = eiaδ |a〉 where

a ∈ {0, 1}. Since R̂z(δ) |0〉 = |0〉 and R̂z(δ) |1〉 = eiδ |1〉,
the states of the basis, up to the global phase, do not change,

however, the state of the qubit as a whole changes, since the

mutual phase changes. Taking into account the parametriza-

tion (2), which is more natural when one considers a qubit as

a point on the Bloch sphere, one has

R̂z(δ) |ψ〉 =

[
1 0

0 eiδ

]



cos

θ

2

eiϕ sin
θ

2



 =




cos

θ

2

ei(ϕ+δ) sin
θ

2



 . (6)

The phase-shift gate corresponds to the rotation, counterclock-

wise, by the δ angle, around z axis on the Bloch sphere.

A unitary operation on the state of the qubit corresponds to the

rotation of the Bloch vector of the qubit on the Bloch sphere.

Any such a transformation (i.e., any rotation of the Bloch

sphere) can be realized with Hadamard gates and phase-shift

gates, for more details one is referred to, e.g., [3].
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3.4. Binary gates and entanglement generation. The inter-

action of spins is the source of entanglement, thus in order

to prepare an entangled state one has to use a binary gate.

In particular, the controlled not gate (CNOT gate) is a bi-

nary gate which can be used for entanglement generation.

The CNOT gate acts on the states of computational basis

{|00〉 , |01〉 , |10〉 , |11〉} similarly to the classical XOR gate:

CNOT(|x〉 |y〉) = |x〉 |x⊕ y〉, where x, y ∈ {0, 1}, and ⊕, as

already mentioned, denotes addition modulo 2. The first input

qubit is called the control qubit, the second one is called the

target qubit. The gate changes the target qubit if the control

qubit is equal to 1, otherwise the target qubit remains un-

changed. The matrix representation of the CNOT gate in the

basis {|00〉 , |01〉 , |10〉 , |11〉} has the form

CNOT =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 . (7)

Using CNOT gate, one can generate entangled states, in par-

ticular the Bell states [3].

4. Realization of the CNOT gate

via two interacting spins

The CNOT gate acts on the two qubit state in the following

way

CNOT(|a〉 |b〉) = |a〉 |a⊕ b〉 , a, b ∈ {0, 1} .
The CNOT gate can be realized with use of the Hadamard

gates Ĥ and ĈZ gates, where ĈZ is the so called controlled

Ẑ gate, defined in the following way

ĈZ |a〉 |b〉 = |a〉 ((1 ⊕ a) |b〉 + aẐ |b〉),
where Ẑ |a〉 = (−1)a |a〉. One has

CNOT =
1

2

(
Î ⊗ Î + Ẑ ⊗ Î + Î ⊗ ĤẐĤ − Ẑ ⊗ ĤẐĤ

)

=
(
Î ⊗ Ĥ

)
ĈZ

(
Î ⊗ Ĥ

)
,

(8)

where

ĈZ =
1

2

(
Î ⊗ Î + Î ⊗ Ẑ + Ẑ ⊗ Î − Ẑ ⊗ Ẑ

)
.

Denoting Ĥ0 ≡ Î⊗ Ĥ, Ẑ0 ≡ Î⊗ Ẑ, Ẑ1 ≡ Ẑ⊗ Î, one can write

ĈZ =
1

2

(
Î + Ẑ0 + Ẑ1 − Ẑ1Ẑ0

)
(9)

and

CNOT = Ĥ0ĈZĤ0. (10)

Taking into account (9) and (10) one can state that the

realization of the CNOT gate reduces to the realization of ĈZ

(up to the Hadamard operation). Since Ĉ2
Z = Î one can write

eiθbCZ = Î cos θ + iĈZ sin θ. (11)

Substituting θ = π
2 in (11) yields

ĈZ = −iei π

2
bCZ = −iei π

4 (bI+bZ1+bZ0−bZ1
bZ0)

= e−i π

4 ei π

4 (bZ1+bZ0−bZ1
bZ0).

A quantum system described by Hamiltonian H evolves

according to the Schrödinger equation

i~
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 . (12)

This evolution in the period of time [0, τ ] corresponds to

the transformation |ψ(0)〉 7→ |ψ(τ)〉. To realize a gate ĈZ ,

for which |00〉 = ĈZ |00〉, |01〉 = ĈZ |01〉, |10〉 = ĈZ |10〉,
− |11〉 = ĈZ |11〉, one has to choose Hamiltonian H in (12)

in such a way, an initial state |ψ(0)〉 equal to, respectively

|00〉 , |01〉 , |10〉 , |11〉 results in a final state |ψ(τ)〉, equal to,

|00〉 , |01〉 , |10〉 , − |11〉, respectively. The problem discussed

is a special case of the more general scheme, the so called

bilinear model [5]. Rewriting (12) as

i~
d

dt
|ψ(t)〉 =

[
H0 +

∑

k

uk(t)Hk

]
|ψ(t)〉 , (13)

as can readily be seen, the control of the system is exerted by

a set of functions uk(t), driving the system from the initial

state |ψ0〉 into the final state |ψf〉. The total Hamiltonian of

the system

H = H0 +
∑

k

uk(t)Hk,

completely determines the controlled evolution of the sys-

tem. The operators Hk, (k = 1, 2, . . .) are called interaction

Hamiltonians.

For the time independent Hamiltonian one can give an

explicit solution of the Eq. (12), the case of time depen-

dent Hamiltonian is more complicated. Thus, first the time-

independent case will be considered and then the time depen-

dent one.

4.1. Time independent Hamiltonian. The following analy-

sis derives from [4] (indirectly from [24]). The solution of the

Eq. (12) for the time independent Hamiltonian reads:

|ψ(t)〉 = e−
iHt

~ |ψ(0)〉 .

From now on we assume ~ = 1. There is a unitary trans-

formation, which transforms the input state (the initial state)

|ψ(0)〉 (within the time period [0, τ ]) into the output (final)

state |ψ(τ)〉, thus, to realize the gate ĈZ one has to choose

the Hamiltonian H satisfying, up to a global factor φ, the

equation

ĈZ = eiφe−iHτ .

The gate is realize via a system of two interacting spins

and the Hamiltonian H describes the interaction of the exoge-

nous magnetic fields on the qubits (spins) of the system, as

well as mutual interactions between the qubits (spins).

It will be shown that the gate ĈZ can be realized, up to

global phase factor, via the interaction of two qubits described

by the Hamiltonian proportional to Ẑ1 + Ẑ0 − Ẑ1Ẑ0, within

an appropriately chosen time period [0, τ ].

The so called exchange interaction is a natural interaction

between two spins is given by
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~σ(1) · ~σ(0) ≡
(
X̂1X̂0 + Ŷ1Ŷ0 + Ẑ1Ẑ0

)

≡
(
X̂ ⊗ X̂ + Ŷ ⊗ Ŷ + Ẑ ⊗ Ẑ

)
.

The gate ĈZ can be implemented with two spins ~σ(1) and

~σ(0) subjected to appropriately chosen magnetic fields. For

the Hamiltonian

H = J ~σ(1) · ~σ(0) +B1Ẑ1 +B0Ẑ0, (14)

one wants to realize, up to the global phase, the gate

ĈZ = e−iHτ ,

by an appropriate choice of J (the so called coupling con-

stant), B1, B0 (magnetic fields acting on spins), and the evo-

lution time τ . More precisely, B0 and B1 appearing in (14)

are not the magnetic fields but are proportional to them, the

proportionality coefficients are, µ0 and µ1, i.e., the magnetic

moments of spins. To simplify the notation we will call B0

and B1 shortly magnetic fields.

Denoting B+ ≡ B1 +B0, B− ≡ B1 −B0, we obtain

H = J ~σ
(1) · ~σ(0) +

1

2
B+

�bZ1 + bZ0

�
+

1

2
B−

�bZ1 − bZ0

�
. (15)

where the Hamiltonian (15) consists of three terms, the

first term is proportional to ~σ(1) · ~σ(0), the second term is

proportional to
(
Ẑ1 + Ẑ0

)
the third one is proportional to

(
Ẑ1 − Ẑ0

)
. Let us note that for ~σ(1) · ~σ(0) one has

(
~σ(1) · ~σ(0)

)
|11〉 = |11〉 ,

(
~σ(1) · ~σ(0)

)
|ψ+〉 = |ψ+〉 ,

(
~σ(1) · ~σ(0)

)
|00〉 = |00〉 ,

(
~σ(1) · ~σ(0)

)
|ψ−〉 = −3 |ψ−〉 ,

where

|ψ+〉 =
1√
2

(|01〉 + |10〉) , |ψ−〉 =
1√
2

(|01〉 − |10〉) .

Moreover, for
1

2

(
Ẑ1 + Ẑ0

)
≡ 1

2

(
Ẑ ⊗ Î + Î ⊗ Ẑ

)
one has

1

2

(
Ẑ1 + Ẑ0

)
|11〉 = − |11〉 , 1

2

(
Ẑ1 + Ẑ0

)
|ψ+〉 = 0,

1

2

(
Ẑ1 + Ẑ0

)
|00〉 = |00〉 , 1

2

(
Ẑ1 + Ẑ0

)
|ψ−〉 = 0.

For 1
2

(
Ẑ1 − Ẑ0

)
≡ 1

2

(
Ẑ ⊗ Î − Î ⊗ Ẑ

)
one has

1

2

(
Ẑ1 − Ẑ0

)
|11〉 = 0,

1

2

(
Ẑ1 − Ẑ0

)
|ψ+〉 = |ψ−〉 ,

1

2

(
Ẑ1 − Ẑ0

)
|00〉 = 0,

1

2

(
Ẑ1 − Ẑ0

)
|ψ−〉 = |ψ+〉 .

Taking into consideration the above relationships, we ob-

tain in the orthonormal basis of eigenstates

{|11〉 , |00〉 , |ψ+〉 , |ψ−〉}
the following matrix of the considered Hamiltonian

H =





J −B+ 0 0 0
0 J +B+ 0 0
0 0 J B−
0 0 B− −3J



 , (16)

The eigenvalues of the Hamiltonian (16) are

λ1 = J −B+ , λ3 = −J +
√

4J 2 +B2
− ,

λ2 = J +B+ , λ4 = −J −
√

4J 2 +B2
−.

In the basis of eigenstates {|χ1〉 , |χ2〉 , |χ3〉 , |χ4〉} the

Hamiltonian assumes the form

H =





J − B+ 0 0 0

0 J + B+ 0 0

0 0 −J +
q

4J 2 + B2
−

0

0 0 0 −J −
q

4J 2 + B2
−




,

where |χ1〉 = |11〉, |χ2〉 = |00〉, while |χ3〉 and |χ4〉 are

appropriate linear combinations of states |ψ+〉 and |ψ−〉.
It is easy to check that ĈZ has an eigenvalue λ = −1

with an associated eigenvector |11〉 and a threefold degen-

erated eigenvalue λ = 1 with an associated eigenvector

span {|00〉 , |ψ+〉 , |ψ−〉}. Hence, it follows that the eigen-

states of the Hamiltonian H are also the eigenstates of the

ĈZ . This result is not surprising, since in the standard basis

{|00〉 , |01〉 , |10〉 , |11〉}

H =





J + B1 + B0 0 0 0

0 −J + B1 − B0 2J 0

0 2J −J − B1 + B0 0

0 0 0 J − B1 − B0



 ,

ĈZ =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



 ,

hence one readily obtains that the commutator of H and ĈZ

is equal to 0 [
H, ĈZ

]
= 0.

The eigenstates of the Hamiltonian H are the eigenstates

of ĈZ , with the associated eigenvalues, respectively, −1, 1, 1

and 1. One has

〈χ1|e−iHτ |χ1〉 = e−iτ(J−B+), 〈χ1|ĈZ |χ1〉 = −1,

〈χ2|e−iHτ |χ2〉 = e−iτ(J+B+), 〈χ2|ĈZ |χ2〉 = 1,

〈χ3|e−iHτ |χ3〉 = e−iτ(−J+
√

4J 2+B2
−

), 〈χ3|ĈZ |χ3〉 = 1,

〈χ4|e−iHτ |χ4〉 = e−iτ(−J−
√

4J 2+B2
−

), 〈χ4|ĈZ |χ4〉 = 1,

thus the realization of the gate ĈZ will be possible (up to the

global phase factor) if one can find such values of J , B1, B0

and τ that

rCl
−eiτ(J−B+) = eiτ(J+B+) = eiτ(−J+

√
4J2+B2

−
)

= eiτ(−J−
√

4J2+B2
−

).
(17)

The relationship (17) implies

eiτ
√

4J 2+B2
− = ±1, eiτB+ = ±i, (18a)

e−2iτJ = eiτB+e−iτ
√

4J 2+B2
− . (18b)
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Relationships ((18a)) are satisfied for

B+ = 2J , B− = 2
√

3J , τ =
π

4J , (19)

hence

B1 =
(
1 +

√
3
)
J , B0 =

(
1 −

√
3
)
J . (20)

The values of the fields B0 and B1 are different, despite

the fact that no one of the qubits is a priori distinguished.

However, there is no contradiction, changing B0 with B1

yields the same transformation. The same applies to the case

when B0 and B1 are time dependent.

4.2. Time dependent Hamiltonian. The case of time inde-

pendent Hamiltonian, i.e., B0 and B1 fields constant within

the [0, τ ] period corresponds to the rectangular pulses of these

fields. Such pulses are not physically realizable, thus the ques-

tion arises whether it is possible to choose pulses changing

in time, starting and ending in zero, but without any abrupt,

step like changes. It turns out that it is possible to find such

pulses.

Generally, when B0 and B1 fields change with time, the

Hamiltonian of the system evolves with time according to the

equation

H(t) = J ~σ(1) · ~σ(0) +B1(t)Ẑ1 +B0(t)Ẑ0

= J
(
X̂ ⊗ X̂ + Ŷ ⊗ Ŷ + Ẑ ⊗ Ẑ

)
+B1(t)

(
Ẑ ⊗ Î

)

+B0(t)
(
Î ⊗ Ẑ

)
.

The Hamiltonian matrix in the standard basis reads

H(t) =





J + B1(t) + B0(t) 0

0 −J + B1(t) − B0(t)

0 2J

0 0

0 0

2J 0

−J − B1(t) + B0(t) 0

0 J − B1(t) − B0(t)




.

The state of the system |ψ(t)〉 evolves according to the

Schrödinger equation

i
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 , |ψ0〉 = |ψ(0)〉 . (21)

Writing explicitly the state |ψ(t)〉 as the sum of real and

imaginary parts

|ψ(t)〉 = Re |ψ(t)〉 + i Im |ψ(t)〉
one can reduce (21) to a real differential equation

d

dt

[
Re |ψ(t)〉
Im |ψ(t)〉

]
=

[
0 H(t)

−H(t) 0

] [
Re |ψ(t)〉
Im |ψ(t)〉

]
,

which can be solved numerically. The equation is solved on

the time compartment [0, τ ]. We look for such B0(t) and

B1(t) that the evolution (21) realizes, up to the global phase

factor, the following map:

|00〉 7→ |00〉 , |01〉 7→ |01〉 , |10〉 7→ |10〉 , |11〉 7→ − |11〉 .
In other words we look for such B0(t) and B1(t) that solving

on the compartment [0, τ ] matrix differential equation

d

dt
U(t) = −iH(t)U(t), (22)

with initial condition

U(0) =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





we obtain

U(τ) = eiφ





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



 , (23)

for some global phase φ. Let us note that owing to the fact

the operation (22) is unitary, and that U(0) is a unitary, the

U(t) matrix remains unitary in any time moment t ∈ [0, τ ].
Using the Matlab code, we have looked for, by trial and

fail method, magnetic pulses (only the z component has been

considered, the x and y components have been set to 0) of

the form

Bξ(t) =

N∑

k=1

Aξ,k sin(kω0t), ω0 =
π

τ
= 4J , (24)

where ξ ∈ {0, 1}. It turns out that already for N = 1 one

can fine the pulses of the form (24) that realize the ĈZ gate.

Moreover, there are many pulses of the form (24), for differ-

ent values of N that realize the ĈZ gate. A few of them are

given in the Subsec. 4.3. The plots of these pulses, along with

the corresponding plots of the time evolution of the appropri-

ate elements of matrix U from the Eq. (22) are depicted in

Figs. 1–10.

The results collected in the Subsec. 4.3 require a commen-

tary. Let us note that in some case a better accuracy could be

wished (it applies in particular to the N = 4 case – the values

of the imaginary parts of u11(τ) and u44(τ) differ somewhat

from zero). From the simulations we have performed, it fol-

lows that the accuracy can be increased at the expense of

larger magnitudes of the pulses. For the pulses collected in

the Subsec. 4.3, the magnitudes do not exceed 10 J (J is

a coupling constant). One can obtain the values of uii(τ),
i ∈ {1, 2, 3, 4} closer to 1 and −1, respectively, but then the

magnitudes of the pulses can achieve values of about 30 J .

The case of pulses with one harmonic component is of

particular interest. (Fig. 3, p. 385). The B0 and B1 pulses

differ only by magnitude, thus by an appropriate choice of

µ0 and µ1 values of magnetic moments one can realize the

considered transformation just with one pulse (i.e., the same

pulse for two spins). This is an important fact, since when the

spins are close to each other, it is difficult to apply to them

different values of magnetic field.
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Fig. 1. Plots of magnetic pulses Bξ(t) =
NP

k=1

Aξ,k sin kω0t, ξ ∈ {0, 1} for N = 1. Values of Aξ,k are given in Subsec. 4.3
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Fig. 2. Plots of the matrix elements of U in function of time for the unitary transformation realized by pulses Bξ(t) =
NP

k=1

Aξ,k sin(kω0t),

ξ ∈ {0, 1} for N = 1. Continuous (dashed) lines correspond to real (imaginary) parts of the elements u11(t), u22(t), u33(t), u44(t),
t ∈ {0, τ} of the matrix e−iφU(τ ) where U(τ ) is given by formula (23)
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Fig. 3. Plots of magnetic pulses Bξ(t) =
NP

k=1

Aξ,k sin kω0t, ξ ∈ {0, 1} for N = 2. Values of Aξ,k are given in Subsec. 4.3
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Fig. 4. Plots of the matrix elements of U in function of time for the unitary transformation realized by pulses Bξ(t) =
NP

k=1

Aξ,k sin(kω0t),

ξ ∈ {0, 1} for N = 2. Continuous (dashed) lines correspond to real (imaginary) parts of the elements u11(t), u22(t), u33(t), u44(t),
t ∈ {0, τ} of the matrix e−iφU(τ ) where U(τ ) is given by formula (23)
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Fig. 5. Plots of magnetic pulses Bξ(t) =
NP

k=1

Aξ,k sin kω0t, ξ ∈ {0, 1} for N = 3. Values of Aξ,k are given in Subsec. 4.3

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

t/τ (4Jτ=π)

eiφ
U

11
(φ

=
3π

/4
)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

t/τ (4Jτ=π)

eiφ
U

22
(φ

=
3π

/4
)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

t/τ (4Jτ=π)

eiφ
U

33
(φ

=
3π

/4
)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

t/τ (4Jτ=π)

eiφ
U

44
(φ

=
3π

/4
)

Fig. 6. Plots of the matrix elements of U in function of time for the unitary transformation realized by pulses Bξ(t) =
NP

k=1

Aξ,k sin(kω0t),

ξ ∈ {0, 1} for N = 3. Continuous (dashed) lines correspond to real (imaginary) parts of the elements u11(t), u22(t), u33(t), u44(t),
t ∈ {0, τ} of the matrix e−iφU(τ ) where U(τ ) is given by formula (23)
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Fig. 7. Plots of magnetic pulses Bξ(t) =
NP

k=1

Aξ,k sin kω0t, ξ ∈ {0, 1} for N = 4. Values of Aξ,k are given in Subsec. 4.3
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Fig. 8. Plots of the matrix elements of U in function of time for the unitary transformation realized by pulses Bξ(t) =
NP

k=1

Aξ,k sin(kω0t),

ξ ∈ {0, 1} for N = 4. Continuous (dashed) lines correspond to real (imaginary) parts of the elements u11(t), u22(t), u33(t), u44(t),
t ∈ {0, τ} of the matrix e−iφU(τ ) where U(τ ) is given by formula (23)
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Fig. 9. Plots of magnetic pulses Bξ(t) =
NP

k=1

Aξ,k sin kω0t, ξ ∈ {0, 1} for N = 5. Values of Aξ,k are given in Subsec. 4.3
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Fig. 10. Plots of the matrix elements of U in function of time for the unitary transformation realized by pulses Bξ(t) =
NP

k=1

Aξ,k sin(kω0t),

ξ ∈ {0, 1} for N = 5. Continuous (dashed) lines correspond to real (imaginary) parts of the elements u11(t), u22(t), u33(t), u44(t),
t ∈ {0, τ} of the matrix e−iφU(τ ) where U(τ ) is given by formula (23)
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One should also pay an attention to the phase φ appearing

in the formula (23). It turns out that for all pulses presented in

Subsec. 4.3, it is equal 3π/4 or 7π/4. However, explanation

of this fact remains an open problem.

4.3. Simulation results. This section contains the specif-

ic magnetic pulses realizing the ĈZ gate. All pulses are

of the form Bξ(t) =
N∑

k=1

Aξ,k sin kω0t, where ξ ∈ {0, 1},

and N ∈ {1, 2, 3, 4, 5}, ω0 = 4J . There were al-

so provided the values u11(τ) = e−iφU11(τ), u22(τ) =
e−iφU22(τ), u33(τ) = e−iφU33(τ), u44(τ) = e−iφU44(τ),
where U11(τ), U22(τ), U33(τ), U44(τ) are the elements of

the unitary matrix U(τ) from the relationship (23), and

τ =
π

4J . The desired values are, respectively, u11(τ) =

u22(τ) = u33(τ) = 1, u44(τ) = −1.

1. N = 1

A0,1 = −7.6733 A1,1 = 4.6370

u1,1(τ ) = 0.9986 − 0.0526 i

u2,2(τ ) = 0.9416 + 0.0094 i

u3,3(τ ) = 0.9416 − 0.0090 i

u4,4(τ ) = −0.9986 − 0.0526 i

2. N = 2

A0,1 = 4.5631 A1,1 = 4.6601

A0,2 = −4.7861 A1,2 = 4.1489

u1,1(τ ) = 0.9950 + 0.1003 i

u2,2(τ ) = 0.9963 − 0.0440 i

u3,3(τ ) = 0.9962 + 0.0442 i

u4,4(τ ) = −0.9949 + 0.1005 i

3. N = 3

A0,1 = −1.3334 A1,1 = 3.4707

A0,2 = −0.0837 A1,2 = 0.4637

A0,3 = 0.0857 A1,3 = 2.3813

u1,1(τ ) = 0.9959 + 0.0908 i

u2,2(τ ) = 0.9915 − 0.0178 i

u3,3(τ ) = 0.9915 + 0.0178 i

u4,4(τ ) = −0.9959 + 0.0909 i

4. N = 4

A0,1 = 2.9188 A1,1 = −1.5230

A0,2 = 2.0895 A1,2 = 2.5355

A0,3 = 2.7661 A1,3 = 0.4873

A0,4 = −2.2924 A1,4 = 2.5910

u1,1(τ) = 0.9460 + 0.3246 i

u2,2(τ) = 0.9757− 0.1785 i

u3,3(τ) = 0.9755 + 0.1786 i

u4,4(τ) = −0.9459 + 0.3246 i

5. N = 5

A0,1 = 2.8670 A1,1 = −1.7253

A0,2 = −2.5268 A1,2 = −2.2067

A0,3 = 2.8575 A1,3 = 1.7149

A0,4 = 0.6084 A1,4 = −1.3457

A0,5 = 2.6145 A1,5 = −0.4872

u1,1(τ) = 1.0003 + 0.0249 i

u2,2(τ) = 0.9976 + 0.0107 i

u3,3(τ) = 0.9976− 0.0107 i

u4,4(τ) = −1.0001 + 0.0251 i

5. Conclusions

The problem of the CNOT gate (realized as a system of two

interacting spins) control has been addressed in the paper,

in particular, the control of CNOT gate via magnetic pulses

has been analyzed. It was shown that there exist such pulses

that realize the CNOT gate, and that they can be numerically

computed by a simple trial and the failure method.
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