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Abstract: Development and application of pneumatic flexible shaft couplings have been in the center of our department research activities 
for a long time. These couplings are able to change torsional stiffness by changing pressure in their flexible elements – air bel-lows. Until 
now we have dealt with the use of pneumatic flexible shaft couplings for tuning mechanical systems working with periodically alternating 
load torque at steady state. Some mechanical systems, however, operate with a static load torque at constant speed (e.g. hoists, eleva-
tors, etc.), where it is necessary to consider the suitability of shaft coupling in terms of load torque at transient conditions (run-up and brak-
ing). Therefore we decided to analyze the use of pneumatic flexible shaft couplings also in this type of mechanical systems on an example 
of conveyor belt drive. 
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1. INTRODUCTION 

Development and application of pneumatic flexible shaft cou-
plings has been in the center of our department research activities 
for a long time (Homišin, 1984, 2002, 2003, 2013, 2014, 2015). 
These couplings are able to change torsional stiffness by chang-
ing pressure in their flexible elements – air bellows.  Mechanical 
drives with periodically alternating load torque (reciprocating 
engines and compressors) are prone to resonance (Czech, 
2012a, 2012b,   2014; Czech et al. 2014), pneumatic flexible shaft 
coupling are ideal device for protecting them from excessive 
torsional vibration (Kaššay et al., 2015). Some mechanical sys-
tems, however, operate with a static load torque at constant 
speed (e.g. hoists, elevators, etc.), where it is necessary to con-
sider the suitability of shaft coupling in terms of load torque at 
transient conditions (run-up and braking). Therefore we decided to 
analyze the use of pneumatic flexible shaft couplings also in this 
type of mechanical systems on an example of conveyor belt drive. 

2. INVESTIGATED MECHANICAL SYSTEM 

The proposed belt conveyor drive (Kaššay, 2014) is shown 
schematically in Fig. 1. Conveyor belt (1) is driven by a SIEMENS 
1LA7 133-4AA three-phase quadrupole asynchronous electric 
motor (2) with nominal power of PN = 7.5 kW and nominal speed 
nN = 1455 rpm through a MOTOVARIO B123 bevel helical gear-
box (3) with gear ratio i = 59.36  The motor and the gearbox are 
connected by a Periflex PTT 104R rubber tire flexible shaft cou-
pling (4). The gearbox and belt conveyor drive pulley are connect-
ed with a 4–1/250–T–C pneumatic flexible shaft coupling devel-
oped by us (5) (Homišin, 2002). The FENA 262 AHH brake (6) is 
located before the gearbox. Conveyor capacity is Qm = 180 [t·h-1], 
horizontal length Lh = 41 m and height H = 12 m. 

Ideally in this type of device the transmitted load torque during 
a steady state operation is constant. Therefore it is necessary to 
determine the maximum torque reached during run-up and brak-
ing and compare them with maximum allowed values. Since 
pneumatic shaft coupling is applied, we carried out this calcula-
tions for the whole operating pressure range pp0 = 100 to 600 kPa 
of used coupling. As operating pressure pp0 is meant the initial 
overpressure (to the atmospheric pressure) by zero twist angle. 

 
Fig. 1. Conveyor belt drive 

 
Fig. 2. Tangential pneumatic flexible shaft coupling 
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The applied pneumatic flexible shaft coupling is a tangential 
type pneumatic coupling (Fig. 2) (Homišin, 1984, 2003) consists 
of driving (1) and driven hub (2) connected by pneumatic flexible 
elements (3) filled with air under pressure. The compression 
volumes of elements are interconnected by tubes (6). 

3. DYNAMIC MODEL OF THE MECHANICAL SYSTEM 

The conveyor belt drive was modelled as four-mass torsional 
system (Fig. 3). The conveyor belt was replaced with two masses 
(I3, I4) to take viscoelastic properties of the belt into account. The 
resistances were equally divided between the masses. 

 
Fig. 3. Dynamic model of conveyor belt drive (reduced on motor shaft) 

Basic parameters of torsional system are as follows: 

 I1 = 2.475·10-2 [kg·m2] – mass moment of inertia of mass 1, 

 I2* = 1.950·10-2 [kg·m2] – mass moment of inertia of mass 2, 

 I3* = 5.282·10-2 [kg·m2] – mass moment of inertia of mass 3,  

 I4* = 4.969·10-2 [kg·m2] – mass moment of inertia of mass 4, 

 k3* = 9.104 [Nm·rad-1] – reduced torsional stiffness of convey-
or belt, 

 b2* = 0.1036 [Nm·rad-1·s] – reduced coefficient of viscous 
damping of pneumatic coupling, 

 b3* = 2.243 [Nm·rad-1·s] – reduced coefficient of viscous 
damping of conveyor belt. 

where all parameters labelled with * symbol are equivalent pa-
rameters reduced on the motor shaft of equivalent system. 

The torque (MM) speed (n) characteristics of electric motor is 
displayed in Fig. 4. 

 
Fig. 4. Torque speed characteristics of electric motor 

The dynamic load torque characteristic of Periflex coupling 
is defined by formula:  ��1 = ∙ ��15 + . ∙ ��13 + . ∙ ��1   (1) 

where: ��1 – is the dynamic torque of coupling 1, S1 – twist 
angle of coupling 1 (Periflex). 

Constant values of braking torque MB = 75 Nm, reduced con-
veyor belt friction torque Mf *= 3.912 Nm and reduced torque from 
load’s weight MG* = 19.52 Nm were considered. We used a math-
ematical-physical model of pneumatic flexible shaft coupling 
based on air compression. We considered the air volume (V) 

dependency on coupling twist angle (s2). The change of air 
pressure is adiabatic. In neutral position (by zero twist angle) the 
air pressure has a value of pp0. The compression volume-twist 
angle graph is displayed in Fig.5. 

 
Fig. 5. Compression volume – twist angle graph 

Static load characteristics of pneumatic coupling by different 
pp0 pressures are displayed in Fig. 6 (Homišin, 2002). 

 
Fig. 6. Static load characteristics of pneumatic flexible shaft coupling  
            by different air pressures 

Viscous damping coefficient of Periflex coupling b1 was com-
puted for each pressure pp0 corresponding to relative damping 

coefficient = 1.2.  The values of viscous damping coefficient b1 
are listed in Tab. 1. 

Tab. 1. Viscous damping coefficient b1 values 

pp0 [kPa] 100 200 300 400 500 600 

b1 [Nm.rad-1.s] 6.283 7.662 8.549 9.520 10.65 11.63 

 
In the simulation we considered run-up, continuous operation 

and braking. In time t = 0 s the brake disengages and the motor 
starts, in time t = 5 s the motor shuts down and the brake engag-
es.  

In Fig. 7 is displayed the time course of Periflex coupling load 
torque by initial pressure pp0 = 400 kPa in the pneumatic coupling. 
In the graph is marked the maximum permissible torque of Peri-
flex coupling by the horizontal line MK1P. 
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In Fig. 8 are displayed the maximum and minimum values 
of Periflex coupling load torque reached during simulation by 
different pressures pp0 in the pneumatic coupling. It is evident, that 
Periflex coupling exceeded the permissible value of load torque by 
pressures pp0 = 100 and 200 kPa.  

 
Fig. 7. Time course of the Periflex coupling load torque by pressure  
             pp0 = 400 kPa in the pneumatic coupling 

 
Fig. 8. Maximum and minimum load torque of Periflex coupling reached 
           during simulation by different pressures in pneumatic coupling 

In Fig. 9 the time course of pneumatic coupling load torque by 
pressure pp0 = 400 kPa is displayed. 

 
Fig. 9. Time course of pneumatic coupling load torque by pressure  
            pp0 = 400 kPa 

In Fig. 10 are displayed the maximum and minimum values 
of pneumatic coupling load torques reached during simulation 
by different pressures pp0. The maximum torque MK2max decreases 
with pressure, while the minimum absolute values MK2min increas-

es. But to determine the suitability of pneumatic coupling, the twist 
angle derived from pneumatic elements permissible compression 
is decisive. 

 
Fig. 10. Maximum and minimum load torque of pneumatic coupling  
              during simulation by it’s different pressures 

In Fig. 11 the time course of pneumatic coupling twist angle by 
pressure pp0 = 400 kPa is displayed. 

 
Fig. 11. Time course of pneumatic coupling twist angle by pressure  
               pp0 = 400 kPa 

In Fig. 12 are displayed the maximum and minimum values 
of pneumatic coupling twist angle reached during simulation by 

different pressures pp0. The maximum permissible twist angle S2P 
is exceeded by pressures pp0 = 100 and 200 kPa. 

 
Fig. 12. Maximum and minimum twist angle of pneumatic coupling  
              reached during simulation by it’s different pressures 
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4. CONCLUSIONS 

From the simulation results it is possible to say that using dif-
ferent initial pressures in pneumatic flexible coupling influences 
the limit values of load torque in both couplings. Generally it is 
necessary to select proper value of air pressure in coupling with 
focus on minimizing torsional vibration and load of multiple drive 
components. In this specific case the given mechanical system 
can operate by pressure pp0 = 300 kPa and above. For the exam-
ined system it is best to inflate the pneumatic coupling on the 
maximum pressure pp0 = 600 kPa. 
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