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Abstract: The aim of this paper is to combine model order
reduction for differential-algebraic equations with port-Hamiltonian
structure preservation. For this, we extend two classes of model re-
duction techniques (reduction of the Dirac structure and moment
matching) to handle port-Hamiltonian differential-algebraic equa-
tions. The performance of the methods is investigated for bench-
mark examples, originating from semi-discretized flow problems and
mechanical multibody systems.
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1. Introduction

Port-Hamiltonian differential-algebraic systems (pHDAEs) arise from port-
based network modeling of multi-physics problems. For this, a physical sys-
tem is decomposed into smaller subsystems that are interconnected through
energy exchange. The subsystems may belong to various different physical do-
mains, such as electrical, mechanical, or hydraulic ones. The energy-based for-
mulation is advantageous as it brings different scales onto a single level, the
port-Hamiltonian (pH) character is inherited by the coupling and the physi-
cal properties (e.g., stability, passivity, energy and momentum conservation)
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are encoded directly in the structure of the pH model equations Beattie et al.,
2018; van der Schaft, 2013). Algebraic constraints naturally come from the in-
terconnections in the form of network conditions, such as Kirchhoff’s laws, or
from constraints that are directly modeled, like position or velocity constraints
in mechanical systems, or from mass balances in chemical engineering prob-
lems, see e.g., Brenan, Campbell and Petzold (1996); Kunkel and Mehrmann
(2006); Riaza (2008). The state space dimension of pHDAEs can be very large,
e.g., for constraint finite element models in structural mechanics (Gräbner et
al., 2016), semi-discretized problems arising in fluid dynamics (Egger et al.,
2018; Emmrich and Mehrmann, 2013; Heinkenschloss, Sorensen and Sun, 2008;
Stykel, 2006a) or multibody problems (Mehrman and Stykel, 2005). In this
case, for optimization and control, model order reduction techniques are needed
that preserve the port-Hamiltonian structure and keep the explicit and hidden
algebraic constraints unchanged. The main topic of this paper is to present such
methods and to study their properties, which brings together model reduction
for differential-algebraic equations with structure preservation.

The properties of pHDAEs have recently been studied in Beattie et al. (2018)
and van der Schaft (2013). For systems of port-Hamiltonian ordinary differen-
tial equations (pHODEs), structure-preserving reduction methods have been
developed based on ideas of tangential interpolation (Gugercin et al., 2012,
2009), moment matching (Polyuga and van der Schaft, 2010, 2011; Wolf et al.,
2010) as well as effort and flow constraint reduction methods (Polyuga and van
der Schaft, 2012). Structure-preserving model reduction for nonlinear systems
has been studied in Chaturantabut, Beattie and Gugercin (2005) and for lin-
ear damped wave equations in Egger et al. (2018), where particular Galerkin
projections have been constructed for the pHDAEs arising in gas transport net-
works. Surveys of model reduction techniques for general DAEs are given in
Benner, Mehrmann and Sorensen (2005) and Benner and Stykel (2017). A cru-
cial step for model reduction is that the dynamic and algebraic equations are
exactly identified and only the dynamic equations are reduced, otherwise the
system may lose important properties, such as stability or passivity.

In this paper we generalize structure-preserving model reduction techniques
that have been developed for pHODEs to pHDAEs. We focus on the effort
and flow constraint model reduction methods as well as on moment matching.
To do this, we follow the regularization concept of Beattie et al. (2018) to
identify and decouple the algebraic constraints and the dynamical equations in
a structure-preserving manner to develop the corresponding reduction meth-
ods. To illustrate the performance of the reduction methods, we apply them
to benchmark problems, originating from semi-discretized flow calculations and
multibody systems. We discuss the advantages but also the limitations of these
methods for pHDAEs.

This paper is structured as follows. The model framework of port-
Hamiltonian differential-algebraic systems and a structure-preserving regular-
ization concept are presented in Section 2. Following this, structure-preserving
reduction techniques for the differential-algebraic pH systems are generalized
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from their ordinary differential equation counterparts in Section 3. The per-
formance of the methods is numerically investigated on the basis of various
benchmark examples in Section 4. The paper closes with a summary in Sec-
tion 5.

2. Model framework of port-Hamiltonian differential-

algebraic systems

In this section we review the structural properties and simplified representations
of pHDAEs according to Beattie et al. (2018) and van der Schaft and Maschke
(2018). In particular, we study the decoupling of the dynamic and algebraic
equations and variables, that will be used in the next section to derive structure-
preserving model reduction techniques.

2.1. Port-Hamiltonian systems

Port-Hamiltonian systems can be derived in two different ways, via a formula-
tion as descriptor systems with special structured coefficient matrices or via an
energy-based formulation on top of a Dirac structure. Since each formulation is
a basis for a model reduction technique, we briefly discuss their relation.

Definition 1 (pHDAE) A linear constant coefficient DAE system of the form

Eẋ = (J −R)Qx+ (B − P )u,

y = (B + P )T Qx+ (S +N)u,
(2.1)

with E, Q, J , R ∈ Rn×n, B, P ∈ Rn×m, S = ST , N = −NT ∈ Rm×m,
on a compact interval I ⊂ R is called a port-Hamiltonian differential-algebraic
system (pHDAE) if the following properties are satisfied.

1. The differential-algebraic operator

QTE
d

dt
−QTJQ : X ⊂ C1(I,Rn) → C0(I,Rn)

is skew-adjoint, i.e., we have that QTJTQ = −QTJQ and QTE = ETQ,
2. the product QTE = ETQ is positive semidefinite, i.e., QTE = ETQ ≥ 0,

and
3. the passivity matrix

W =

[
QTRQ QTP
PTQ S

]

∈ R
(n+m)×(n+m)

is symmetric positive semi-definite, i.e., W = WT ≥ 0.
The quadratic Hamiltonian function H : Rn → R of the system is given by

H(x) =
1

2
xTQTEx. (2.2)



128 S. Hauschild, N. Marheineke and V. Mehrmann

Theorem 1 Consider a pHDAE of the form (2.1). If for given input function
u the system has a (classical) solution x ∈ C1(I,Rn) in I, then

d

dt
H(x) = uT y −

[
x
u

]T

W

[
x
u

]

.

Furthermore, if W = 0, then d
dt
H(x) = uT y.

Theorem 1 implies some important properties of a pHDAE. First of all, its
Hamiltonian is an energy storage function, and the system is passive. A pH-
DAE satisfies a dissipation inequality. Furthermore, it is implicitly Lyapunov
stable as H defines a Lyapunov function. The physical properties are encoded
in the algebraic structure of the coefficient matrices and the geometric struc-
tures associated with the flow of the system. In this sense, ETQ is the energy
matrix, QTRQ is the dissipation matrix, QTJQ the structure matrix describ-
ing the energy flux among the energy storage elements, B ± P are the port
matrices for energy in- and output, and S, N are the matrices associated to
a direct feed-through from input u to output y. In the case when E = I is
the identity matrix, the pHDAE reduces to a standard pHODE as studied in
van der Schaft and Jeltsema (2014).

In the alternative energy-based formulation a port-Hamiltonian system is
characterized by the fact that the flow and effort variables of its energy-storing
port, its energy-dissipating port and its external port are linked together in a
power-conserving manner by a Dirac structure. Given a finite-dimensional linear
space F with its dual space E = F∗, a Dirac structure is a subset D ⊂ F × E
satisfying eT f = 0 for all (f, e) ∈ D and dimD = dimF . For a pHDAE in the
form (2.1), the flow and effort variables are defined on F = Fx ×FR ×FP and
E = Ex × ER × EP ⊂ R

n × R
n+m × R

m, respectively. They are given by

fx = −Eẋ, ex = Qx, fR = −

[
R P
PT S

]

eR, eR =

[
Qx
u

]

,

fP = y, eP = u,

((fx, fR, fP ), (ex, eR, eP )) ∈ D ⊂ F × E for all t ∈ I.

The variables (fx, ex) ∈ Fx × Ex of the energy-storing port are related to
the evolution of the state and the Hamiltonian H. If E = I, then the con-
stitutive relations read as (fx, ex) = (−ẋ,∇xH(x)). The port variables of
the energy-dissipating elements satisfy a resistive relation, eTRfR ≤ 0 for all
(fR, eR) ∈ R ⊂ FR × ER, which is encoded in the stated positive semidefi-
nite matrix R. The external port variables (fP , eP ) ∈ FP × EP correspond to
the out- and inputs of the system. The energy-conservation property follows
directly from Theorem 1. Based on the notion of the Dirac structure, the pH
system possesses a DAE representation, see van der Schaft and Maschke (2018);
van der Schaft and Jeltsema (2014), i.e.,

−Fx fx = Ex ex + FR fR + ER eR + FP fP + EP eP for all t ∈ I (2.3)
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with matrices Fx, Ex ∈ Rq×n, FR, ER ∈ Rq×(n+m) and FP , EP ∈ Rq×m where
q = n+ (n+m) +m and

∑

i=x,R,P EiF
T
i + FiE

T
i = 0.

We refer to van der Schaft and Maschke (2018) for further details, in partic-
ular, it is proven there that the formulation as descriptor system of (2.1) can be
converted into the energy-based formulation, and conversely, by the addition of
Lagrange multipliers.

2.2. Structure-preserving regularization

A pHDAE system typically contains explicit as well as implicit (hidden) con-
straints. Since in model reduction all constraints need to be kept unchanged in
order not to destroy crucial properties, we need to identify all constraints. If
the differentiation-index is larger than one, then an index reduction, e.g., via
derivative arrays or minimal extension, should be performed, see Kunkel and
Mehrmann (2006) for general DAEs. For pHDAEs this index reduction has to
be performed in a structure-preserving way, see Beattie et al. (2018). It has
been shown in Mehl, Mehrmann and Wojtylak (2018) for the linear constant
coefficient case and in Scholz (2017) for the linear time-varying case that the
differentiation-index will be at most two, i.e., in simple terms at most the sec-
ond derivative of the input function u is required to transform the system into a
pHODE. In contrast to the numerical solution of pHDAEs/pHODEs via time-
integration methods, which is still partially an open problem (see, e.g., Kotyczka
and Lefèvre, 2018) in the context of model reduction also a structure-preserving
decoupling of the dynamic and algebraic variables should be performed. This
may be a very critical step for linear time-varying or nonlinear systems, since
it may require time-varying changes of variables, with all related difficulties,
in particular of having to provide derivatives of the transformation functions
(Kunkel and Mehrmann, 2006). But even in the case of constant coefficients,
changes of variables with ill-conditioned transformation matrices may have to
be handled.

In the following, we present the structure-preserving decoupling for linear
constant coefficient pHDAEs, which is covered by the regularization concept for
linear time-varying systems of Beattie et al. (2018). The concept is particularly
based on the fact that the port-Hamiltonian structure and the associated Hamil-
tonian are preserved under basis change and scaling with invertible matrices.

Lemma 1 Consider a pHDAE of the form (2.1) with Hamiltonian H (2.2). Let
U , V ∈ Rn×n be invertible. Then the transformed system

Ẽ ˙̃x = (J̃ − R̃)Q̃x̃+ (B̃ − P̃ )u,

y = (B̃ + P̃ )T Q̃x̃+ (S +N)u

with Ẽ = UTEV , J̃ = UTJU , R̃ = UTRU , B̃ = UTB, P̃ = UTP , as well
as Q̃ = U−1QV and x̃ = V −1x is still a pHDAE with the same Hamiltonian
H̃(x̃) = 1

2 x̃
T Q̃T Ẽx̃ = H(x).
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Note that throughout the paper we often use the abbreviation L = J − R.
For the decoupling of a pHDAE (2.1) of index at most one, two orthogonal
transformation matrices Ũ , V ∈ Rn×n can be determined, such that

ŨTEV =

[
E11 0
0 0

]

with E11 invertible and L̃ partitioned analogously

L̃ =

[
L̃11 L̃12

L̃21 L̃22

]

:= ŨTLŨ.

Setting U = ŨT with

T =

[
I 0

−(L̃22)
−T L̃T

12 I

]

,

and transforming with U and V as in Lemma 1 yields the block-structured
pHDAE

[
E11 0
0 0

] [
ẋ1

ẋ2

]

=

[
L11 0
L21 L22

] [
Q11 0
Q21 Q22

] [
x1

x2

]

+

([
B1

B2

]

−

[
P1

P2

])

u,

y =

([
B1

B2

]

+

[
P1

P2

])T [
Q11 0
Q21 Q22

] [
x1

x2

]

+ (S +N)u.

(2.4)

Theorem 2 (Decoupled pHDAE) Suppose that the pHDAE (2.1) is of
differentiation-index at most one. Let the system be transformed to the form
(2.4) via U and V and define V −1x = [xT

1 xT
2 ]

T . Then, for any input u and
initial condition x1(t0) = x1,0, the output y and the state x1 of (2.4) are given
by the implicit pHODE

E11 ẋ1 = (J11 −R11)Q11 x1 + (B̂1 − P̂1)u,

y = (B̂1 + P̂1)
TQ11 x1 + (Ŝ + N̂)u

with Hamiltonian Ĥ(x1) =
1
2x

T
1 Q

T
11E11x1 = H(x), and coefficients

B̂1 = B1 −
1

2
LT
21L

−T
22 (B2 + P2),

P̂1 = P1 −
1

2
LT
21L

−T
22 (B2 + P2),

Ŝ = S −
1

2
[(B2 + P2)

TL−1
22 (B2 − P2) + (B2 − P2)

TL−T
22 (B2 + P2)],

N̂ = N −
1

2
[(B2 + P2)

TL−1
22 (B2 − P2)− (B2 − P2)

TL−T
22 (B2 + P2)].

The state x2 is uniquely determined by the explicit algebraic constraint

L22Q22 x2 = −(L21Q11 + L22Q21)x1 − (B2 − P2)u,

which implies a consistency constraint for the respective initial condition.
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Theorem 2 can be embedded into the regularization concept of Beattie et al.
(2018).

Typically, the original pencil (sE − LQ), s ∈ C, is regular, i.e., its determi-
nant is not identically zero, which means that a unique solution exist for every
sufficiently smooth input function u and every consistent initial condition. If this
is not the case, then a complex regularization procedure can be performed, which
consists of transformations, feedbacks and renaming of variables, see Campbell,
Kunkel and Mehrmann (2012). Since this procedure is not yet available for
pHDAEs, in the following we assume that sE −LQ is regular. Then the pencil
sE − Q is regular as also shown in Mehl, Mehrmann and Wojtylak (2018). In
this case we can decouple (2.4) even further by identifying the zero eigenvalues
of the system. For this, a change of basis is applied to the dynamic state x1.
From ETQ = QTE ≥ 0 it follows that the block matrix Q11E

−1
11 is symmetric

positive semidefinite and allows for an ordered Schur decomposition that can
be obtained from the generalized singular value decomposition (Golub and van
Loan, 1996). Even though we will not carry out this transformation explicitly,
it follows that the system can be transformed as

Q11E
−1
11 = Ū

[
ΣQ 0
0 0

]

ŪT , ΣQ = ΣT
Q > 0, ŪT = Ū−1.

Introduction of ŪTE11x1 = [xT
1,a xT

1,b]
T yields then a pHDAE of the form





I 0 0
0 I 0
0 0 0









ẋ1,a

ẋ1,b

ẋ2



 =





Laa
11 Lab

11 0
Lba
11 Lbb

11 0
La
21 Lb

21 L22









ΣQ 0 0
0 0 0

Qa
21 Qb

21 Q22









x1,a

x1,b

x2





+









Ba
1

Bb
1

B2



−





P a
1

P b
1

P2







 u, (2.5)

y =









Ba
1

Bb
1

B2



−





P a
1

P b
1

P2









T 



ΣQ 0 0
0 0 0

Qa
21 Qb

21 Q22









x1,a

x1,b

x2





+ (Ŝ + N̂)u,

which we will use as a basis for our model order reduction methods.

Remark 1 In the decoupled form (2.5), some further transformations can be
applied to achieve Qa

21 = 0. However, since the inverse of Q22 is involved in
this transformation, we stay with the form (2.4) ( (2.5), respectively).

Remark 2 Port-Hamiltonian systems of index two can be decoupled by a sim-
ilar procedure or in the same way after index reduction, for details we refer to
Beattie et al. (2018). For special cases with nicely structured system matrices,
however, index reduction and decoupling need only a singular value decomposi-
tion, as demonstrated in Section 4.
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3. Model reduction techniques

3.1. Preliminary remarks

In this section we present two different classes of model order reduction methods
for pHDAEs. The first class is based on the reduction of the underlying Dirac
structure and the associated power conservation, whereas the second one, the
well-known moment matching, aims at the approximation of the transfer func-
tion. To derive the reduction methods, we assume that the pHDAE is in the
form analogous to (2.5), but for convenience we neglect the feed-through terms,
i.e., we assume that S = N = 0 and then, as a consequence, we have P = 0,
since W ≥ 0. However, generalizations to systems with feed-through term are
straightforward.

In the following we use an adapted notation, considering the pHDAE




In1
0 0

0 In2
0

0 0 0









ẋ1

ẋ2

ẋ3



 =

=









J11 J12 J13
J21 J22 J23
J31 J32 J33



−





R11 R12 R13

RT
12 R22 R23

RT
13 RT

23 R33













Q11 0 0
0 0 0

Q31 Q32 Q33









x1

x2

x3





+





B1

B2

B3



u, (3.1)

y =





B1

B2

B3





T 



Q11 0 0
0 0 0

Q31 Q32 Q33









x1

x2

x3



 .

for the states xi ∈ Rni ,
∑3

i=1 ni = n, with the accordingly block-structured
coefficient matrices E, Q, QTJQ = −QTJTQ, QTRQ = QTRTQ ∈ Rn×n and
B ∈ Rn×p, where (Jj3 −Rj3) = 0 for j = 1, 2, Q11 > 0 and Q33 is nonsingular.

3.2. Power conservation based model order reduction

The power conservation based methods were originally developed for standard
pHODEs in Polyuga and van der Schaft (2012), i.e., systems of the form (2.1)
with E = I being the identity. If for such a system a splitting of the dynamic
state as x = [xT

r xT
s ]

T exists, with xr ∈ Rr and xs ∈ Rn−r, where xs does not
contribute much to the input-output behavior of the system, then the general
idea is to cut the interconnection between the part of the energy storage port
belonging to xs and the Dirac structure, such that no power is transferred.
Then, the power is exclusively exchanged via the energy storage of xr, which
will act as reduced state variable, whereas xs will be skipped. The constitutive
relations become

ẋi = −fxi
, ∇xi

H(x) = exi
, i ∈ {r, s}
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with ex = [eTxr
eTxs

]T and fx = [fT
xr

fT
xs
]T . To cut the interconnection, we

force one of the power products (∇xs
H)T ẋs or eTxs

fxs
to be zero. Choosing

∇xs
H(x) = exs

= 0 yields the effort constraint reduction method (ECRM),
while setting ẋs = −fxs

= 0 results in the flow constraint reduction method
(FCRM).

We now adopt these reduction procedures of Polyuga and van der Schaft
(2012) to reduce pHDAEs in the form (2.3). Proceeding from (3.1), let
V̂ −1x1 = [xT

1,r xT
1,s]

T , x1,r ∈ Rr, x1,s ∈ Rn1−r, be an appropriate splitting of
the dynamic part of the state variable with respect to its relevance for the input-
output behavior. In the resulting system, transformed by means of V −T and V
as in Lemma 1, with a block diagonal matrix V = diag(V̂ , In2

, In3
) ∈ Rn×n, we

denote the state by x = [xT
1,r xT

1,s xT
2 xT

3 ]
T . By definition, the flow and effort

variables of the energy-storing and energy-dissipating ports inherit the partition-
ing, and the coefficient matrices are structured accordingly. The constitutive
relations then read fx = −(V −1EV )ẋ and ex = (V TQV )x, with







fx1,r

fx1,s

fx2

fx3






= −







I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0













ẋ1,r

ẋ1,s

ẋ2

ẋ3






,







ex1,r

ex1,s

ex2

ex3






=







Qrr
11 Qrs

11 0 0
(Qrs

11)
T Qss

11 0 0
0 0 0 0

Qr
31 Qs

31 Q32 Q33













x1,r

x1,s

x2

x3






. (3.2)

For the model reduction we have to open the resistive port. The transformed
symmetric positive semi-definite dissipation matrix V −1RV −T ∈ Rn×n admits
an ordered Schur decomposition

V −1RV −T =
[

C Ĉ
]
[

R̂ 0
0 0

] [
CT

ĈT

]

= CR̂CT , (3.3)

with 0 < R̂ = R̂T ∈ Rℓ×ℓ and C ∈ Rn×ℓ, where ℓ is the number of energy-
dissipating elements. Plugging (3.3) into the transformed system and introduc-
ing the associated flow and effort variables accordingly, i.e., fR = −R̂eR and
eR = CT (V TQV )x = CT ex, yields a pHDAE with opened resistive port. By
inserting the constitutive relations (3.2) and introducing the external port vari-
ables (fP , eP ) = (y, u), where y = (V −1B)T (V TQV )x = (V −1B)T ex, we obtain
a new representation of (3.1) as
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−











Ir 0 0 0
0 In1−r 0 0
0 0 In2

0
0 0 0 In3

0 0 0 0
0 0 0 0

















fx1,r

fx1,s

fx2

fx3






=

=











Jrr
11 Jrs

11 Jr
12 Jr

13

Jsr
11 Jss

11 Js
12 Js

13

Jr
21 Js

21 J22 J23
Jr
31 Js

31 J32 J33
−(Br

1)
T −(Bs

1)
T −BT

2 −BT
3

−(Cr
1 )

T −(Cs
1)

T −CT
2 −CT

3

















ex1,r

ex1,s

ex2

ex3






+

+











Cr
1

Cs
1

C2

C3

0
0











fR +











0
0
0
0
0
Iℓ











eR +











0
0
0
0
Im
0











y +











Br
1

Bs
1

B2

B3

0
0











u.

(3.4)

In the Effort Constraint Reduction Method (ECRM) the energy transfer
between the energy-storing elements and the Dirac structure is cut by setting
ex1,s

= 0. Here, the Hamiltonian is considered to be only weakly influenced by
x1,s. The relation x1,s = −(Qss

11)
−1(Qrs

11)
Tx1,r follows in a straightforward way

from (3.2) as Qss
11 = (Qss

11)
T > 0. The reduced Dirac structure is obtained by

multiplying (3.4) from the left with any matrix Dec of maximal rank satisfying
DecFx1,s

= 0, such as,

Dec =









Ir 0 0 0 0 0
0 0 In2

0 0 0
0 0 0 In3

0 0
0 0 0 0 Im 0
0 0 0 0 0 Iℓ









.

Rewriting the resulting system again as DAE and closing the resistive port yields
the reduced model (3).

Theorem 3 (Reduced model by ECRM) Consider a pHDAE of the form
(3.1) with its representation (3.4). Then, the reduced model obtained by ECRM
with reduced state xec = [xT

1,r xT
2 xT

3 ]
T ∈ R(r+n2+n3), r ≪ n1, is a pHDAE given
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by





Ir 0 0
0 In2

0
0 0 0





︸ ︷︷ ︸

Eec





ẋ1,r

ẋ2

ẋ3



 =














Jrr
11 Jr

12 Jr
13

Jr
21 J22 J23

Jr
31 J32 J33





︸ ︷︷ ︸

Jec

−





Rrr
11 Rr

12 Rr
13

Rr
21 R22 R23

Rr
31 R32 R33





︸ ︷︷ ︸

Rec














Q̂11 0 0
0 0 0

Q̂31 Q32 Q33





︸ ︷︷ ︸

Qec





x1,r

x2

x3





(3.5)

+





Br
1

B2

B3





︸ ︷︷ ︸

Bec

u,

yec = (Bec)TQecxec,

with Jec = −(Jec)T , Rec = (Rec)T ≥ 0, where Q̂11 = Qrr
11 −Qrs

11(Q
ss
11)

−1(Qrs
11)

T

and Q̂31 = Qr
31 −Qs

31(Q
ss
11)

−1(Qrs
11)

T .

Proof In the described reduction the port-Hamiltonian properties are
inherited. The skew-symmetry of Jec follows trivially, since

Jec = DaV
−1JV −TDT

a = −(Jec)T , Da =





Ir 0 0 0
0 0 In2

0
0 0 0 In3



 .

The symmetry and positive semi-definiteness

(Eec)TQec =

[

Q̂11 0
0 0

]

= (Qec)TEec ≥ 0

follows from Q̂11 = Q̂T
11 > 0 as it is constructed from the Schur complement of

a positive definite matrix. Finally,

(Qec)TRecQec = DbV
TQTRQVDT

b ≥ 0,

Db =





Ir −Qrs
11(Q

ss
11)

−1 0 0
0 0 In2

0
0 0 0 In3



 ,

where the component x1,s is projected out by means of Db. ✷

In the Flow Constraint Reduction Method (FCRM), the energy transfer be-
tween the energy-storing elements and the Dirac structure is cut by setting
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fx1,s
= 0 and ẋ1,s = 0. Thus, x1,s is constant and can, in particular, be chosen

as x1,s = 0. The reduced Dirac structure is obtained by multiplying (3.4) from
the left with any matrix Dfc of maximal rank satisfying DfcEx1,s

= 0, e.g., with

Dfc =









Ir −Jrs
11 (J

ss
11)

−1 0 0 0 0
0 −Js

21 (J
ss
11)

−1 In2
0 0 0

0 −Js
31 (J

ss
11)

−1 0 In3
0 0

0 (Bs
1)

T (Jss
11)

−1 0 0 Im 0
0 (Cs

1)
T (Jss

11)
−1 0 0 0 Iℓ









,

in the case that (Jss
11)

−1 exists. Rewriting the system as a DAE, analogously to
ECRM, yields the reduced model (3.6).

Theorem 4 (Reduced model by FCRM) Consider a pHDAE of the form
(3.1) with its general representation (3.4) and suppose that Jss

11 in (3.4) is in-
vertible. Then, the reduced order model obtained by FCRM is port-Hamiltonian
and, for state xfc = [xT

1,r xT
2 xT

3 ]
T ∈ R(r+n2+n3), r ≪ n1, is given by





Ir 0 0
0 In2

0
0 0 0





︸ ︷︷ ︸

Efc





ẋ1,r

ẋ2

ẋ3



 =



J − CTZJC
︸ ︷︷ ︸

Jfc

−CTZRC
︸ ︷︷ ︸

Rfc









Qrr
11 0 0
0 0 0

Qr
31 Q32 Q33





︸ ︷︷ ︸

Qfc





x1,r

x2

x3





+



−BT − CTZJG
︸ ︷︷ ︸

Bfc

−CTZRG
︸ ︷︷ ︸

P fc



 u,

yfc =
(
Bfc + P fc

)T
Qfcxfc +



GTZRG
︸ ︷︷ ︸

Sfc

+GTZJG −N
︸ ︷︷ ︸

N fc



u,

(3.6)

with

J = [J ]k,l=1,2,3 = −J T ,

J11 = Jrr
11 − Jrs

11 (J
ss
11)

−1Jsr
11 , J1j = Jr

1j − Jrs
11 (J

ss
11 )

−1Js
1j , j = 2, 3,

J2j = J2j − Js
21(J

ss
11)

−1Js
1j , J33 = J33 − Js

31(J
ss
11)

−1Js
13, j = 2, 3,

B = [B]k=1,2,3,

B1 = (Bs
1)

T (Jss
11 )

−1Jsr
11 − (Br

1)
T , Bj = (Bs

1)
T (Jss

11)
−1Js

1j −BT
j , j = 2, 3,

C = [C]k=1,2,3,

C1 = (Cs
1)

T (Jss
11)

−1Jsr
11 − (Cr

1 )
T , Cj = (Cs

1)
T (Jss

11 )
−1Js

1j − CT
j , j = 2, 3,

G = (Cs
1)

T (Jss
11)

−1Bs
1 , D = (Cs

1)
T (Jss

11 )
−1Cs

1 ,

N = (Bs
1)

T (Jss
11 )

−1Bs
1 ,

as well as Z = R̂(I − DR̂)−1 with its symmetric and skew-symmetric parts,
ZR = (Z + ZT )/2 and ZJ = (Z − ZT )/2.
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Proof In the described reduction, the port-Hamiltonian properties are in-
herited. It follows trivially that J fc, N fc are skew-symmetric and Rfc, Sfc

are symmetric by construction. From Qrr
11 = (Qrr

11)
T > 0 it results that

(Efc)TQfc = (Qfc)TEfc ≥ 0. Finally,

[
(Qfc)TRfcQfc (Qfc)TP fc

(P fc)TQfc Sfc

]

=

[
(Qfc)T 0

0 I

] [
CT

GT

]

ZR

[
C G

]
[
Qfc 0
0 I

]

≥ 0

holds, since ZR is positive (semi-)definite, see (Polyuga and van der Schaft,
2012). ✷

The reduced models obtained by ECRM and FCRM have similarities, but
also show crucial differences. Obviously, Eec = Efc, implying the same size
of the reduced states. The energy matrices Qec, Qfc only differ in the first
column. In particular, ECRM generates an additive term in the matrix Q̂11,
and also in the matrix Q̂31, associated to the algebraic constraints due to the
elimination see x1,s, see (3). Clearly, the models differ in the feed-through term,
which is only present in FCRM (see Sfc, N fc and P fc in (3.6)), even though the
original system (3.1) did not have such a term. It is further important to note
that the construction of ECRM is always applicable, whereas in the presented
form FCRM requires the skew-symmetric matrix Jss

11 to be invertible, which is,
e.g., impossible if the size (n1 − r) is odd. In the case that Jss

11 is singular,
the procedure has to be modified, but we do not present this modification here
because it gets rather technical.

Remark 3 In the presented power conservation based methods, the general
representation (3.4) for the pHDAE differs from the one for a standard
pHODE (Polyuga and van der Schaft, 2012) by the two additional block rows
and columns for the equations associated with the kernel of the energy matrix
and with the algebraic constraints. Hence, ECRM yields a reduced model (3)
with equivalent block matrices in the dynamic part. However, although the reduc-
tion is only applied to the dynamic state, additional terms in Q̂31 associated to
the algebraic constraints are generated. Also the reduced model (3.6) by FCRM
contains additional blocks, i.e., J1j, J2j, J33, Bj and Cj, j ∈ {2, 3}, which arise
from the additional equations. The coefficients J11, B1, C1, G, D and N are
analogous to their counterparts for a pHODE.

3.3. Moment matching

The model reduction procedure of moment matching (MM) derives a reduced
order model by means of a Galerkin projection in such a way that the leading
coefficients of the series expansion of its transfer function (its moments) match
those of the full order system, i.e.,

G(s) = BT (sE − (J −R)Q)−1B =

∞∑

j=0

mj(s0 − s)j
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with moments mj associated with a given shift parameter s0. For details of
MM for DAEs we refer to Freund (2005) for s0 ∈ C and to Benner and Sokolov
(2006) for s0 = ∞. To apply these techniques in a structure-preserving way
to the pHDAE (3.1), the symmetric positive definite energy matrix block Q11

associated to the dynamic state is first transformed to become an identity, as
done in the works on MM for pHODEs (Polyuga and van der Schaft, 2010,
2011). Upon performing a Cholesky factorizationQ11 = KKT and transforming
appropriately, by Lemma 1 with U = diag(K, In2

, In3
), V = U−T ∈ Rn×n, the

resulting system is still port-Hamiltonian. Then, a Galerkin projection matrix
for the dynamic part Vr ∈ Rn1×r, r ≪ n1, can be computed, e.g., by the Arnoldi
method (Freund, 2005), such that V T

r Vr = Ir and its columns span a Krylov
space, associated to the system shifted by s0 (Saad, 2003). Applying finally
the Galerkin projection with V m

r = diag(Vr , In2
, In3

) ∈ R
n×(r+n2+n3) yields the

reduced model.

Theorem 5 (Reduced model by MM) Consider a pHDAE of the form
(3.1) with energy matrix block Q11 = KKT . Let the projection matrix Vr ∈
Rn1×r that is applied to the system matrices KTL11K and KTB1 be com-
puted by the Arnoldi method. Then the reduced system is port-Hamiltonian,
matches the first r moments of the full order system and is for the state
xm = [xT

1,r xT
2 xT

3 ]
T ∈ R(r+n2+n3), r ≪ n1, with x1,r = V T

r KTx1, given by





Ir 0 0
0 In2

0
0 0 0





︸ ︷︷ ︸

Em





ẋ1,r

ẋ2

ẋ3



 =





V T
r KTL11KVr V T

r KTL12 V T
r KTL13

L21KVr L22 L23

L31KVr L32 L33





︸ ︷︷ ︸

Jm−Rm

×

×





Ir 0 0
0 0 0

Q31K
−TVr Q32 Q33





︸ ︷︷ ︸

Qm





x1,r

x2

x3





+





V T
r KTB1

B2

B3





︸ ︷︷ ︸

Bm

u,

ym = (Bm)TQmxm

with Lij = Jij −Rij , i, j = 1, 2, 3.

Proof The port-Hamiltonian structure is trivially preserved by the Q11-
associated transformation and the subsequent Galerkin projection.. The match-
ing of the first r moments is proved in Freund (2005) for s0 ∈ C and in
Benner and Sokolov (2006) for s0 ∈ ∞. ✷
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4. Numerical results

4.1. Initial remarks

In this section we investigate the performance of the model reduction methods,
using benchmark examples from the literature, see, e.g., Beattie, Gugercin and
Mehrmann (2017), Borggaard and Gugercin (2015), Gugercin, Stykel andWyatt
(2013), Heinkenschloss, Sorensen and Sun (2008), Mehrmann and Stykel (2005)
or Stykel (2006a). In order to perform model reduction, it is essential to identify
all constraints arising from the physics of the problem as discussed in Section 2.2.
In many applications this can be done directly by exploiting the structure of
the equations coming from the physical properties.

Considering the transfer functionG of the original full order system, we study
the approximation quality of the various reduced order systems by comparing
the relative errors (G − Gr)/G with Gr ∈ {Gec, Gfc, Gm} being the transfer
function of the reduced system. Usually, this is done in the L2-norm in the
state-space formulation or in the H∞-norm in the frequency domain. Since the
latter norm is only defined for pHDAEs of index at most one, for pHDAEs of
higher index we present the errors for the index reduced system. The transfer
function of a pHDAE of the form (2.1) is given by

G(s) = (B + P )T (sE − (J −R)Q)−1(B − P ) + (S +N), s ∈ C.

For pHDAEs of index at most one it is either a proper rational function or the
sum of a proper rational function with a term that is constant in s.

The numerical results have been computed with Matlab 2017a on a Linux
64-Bit machine with an Intel R© Core

TM

i7-6700 processor. In the context of
computing the error norms (see Aliyev et al., 2017; Stykel, 2006b), it is necessary
to solve Lyapunov equations, for which we have used the M.M.E.S.S. Toolbox
(Saak, Köhler and Benner, 2016).

4.2. Flow problems

Consider an instationary incompressible fluid flow, prescribed in terms of ve-
locity v : Ω × [0, T ] → R2 and pressure p : Ω × [0, T ] → R on the spatial
domain Ω = (0, 1)2 with boundary ∂Ω for the time period [0, T ], that is driven
by external forces f : Ω × [0, T ] → R2 and dynamic viscosity ν > 0. The
subsequently described models of partial differential equations (Stokes as well
as Oseen equations) are closed by non-slip boundary conditions and appropri-
ate initial conditions v0. Spatial discretization by a finite difference method on
a uniform staggered grid yields pHDAEs for the state x = [vTh pTh ]

T with the
semi-discretized values of the velocities vh(t) ∈ R

nv and pressures ph(t) ∈ R
np ,

t ∈ [0, T ] (nv, np ∈ N, see Remark 4).
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Stokes equations

A laminar flow can be modeled by the linear Stokes equations,

∂tv = ν∆v −∇p+ f, in Ω× (0, T ],

0 = − div v, in Ω× (0, T ],

v = 0, on ∂Ω× (0, T ],

v = v0, in Ω× {0}.

A spatially semi-discretized differential-algebraic system for x = [vTh pTh ]
T , com-

pleted with an appropriate output equation, is given by

[
I 0
0 0

]

︸ ︷︷ ︸

E

[
v̇h
ṗh

]

=

([
0 −DT

D 0

]

︸ ︷︷ ︸

J

−

[
−L 0
0 0

]

︸ ︷︷ ︸

R

)[
vh
ph

]

+

[
F
0

]

︸︷︷︸

B

u,

y = BTx,

(4.1)

with the symmetric negative definite discrete Laplace operator L ∈ Rnv×nv , as
well as the discrete divergenceD and gradient operatorsDT ∈ Rnv×np , np < nv.
The operator D usually has full row rank if the freedom in the pressure (which
only occurs in differentiated form in the system) is removed, see Remark 4
further on in this section. The initial conditions are vh(0) = v0h and consistently
ph(0) = p0h. The input u with input matrix F ∈ Rnv×m results from the
external forces. The output equation is supplemented accordingly regarding the
port-Hamiltonian form (2.1). System (4.1) is obviously port-Hamiltonian with
Q = I, P = 0 and S = N = 0, as ETQ = QTE ≥ 0, J = −JT and R = RT ≥ 0
hold.

For the index reduction of the pHDAE (4.1) (which is of differentiation-
index two) we do not need the whole derivative array; instead we can easily
identify the equations that have to be differentiated from the special structure
of the system by performing, e.g., a Leray projection as done by Heinkenschloss,
Sorensen and Sun (2008) or a singular value decomposition,

DT = U
[
ΣD 0

]T
V T , ΣD = diag(σ1, . . . , σnp

) ∈ R
np×np ,

with orthogonal matrices U ∈ Rnv×nv , V ∈ Rnp×np and singular values σi > 0,
i = 1, . . . , np. By setting Z = VΣD, performing an equivalence transformation
with U and splitting the state variable accordingly into three parts, we get the
system




I 0 0
0 I 0
0 0 0









ẋ1

ẋ2

ẋ3



 =









0 0 −ZT

0 0 0
Z 0 0



−





−L11 −L12 0
−LT

12 −L22 0
0 0 0













x1

x2

x3



+





B1

B2

0



u,

y =
[
BT

1 BT
2 0

]





x1

x2

x3



 .
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Obviously, x1 = 0, as the last equation is 0 = Zx1 with Z invertible. This is
the equation that has to be differentiated and inserted into the first equation to
derive the second (hidden) algebraic constraint

ZTx3 = L12x2 +B1u

as well as a consistency condition for the initial value, which relates the initial
condition for u and x2 to that for x3. The second equation yields the underlying
ODE of the system for the variable x2 : [0, T ] → R(nv−np) to be reduced and
the output equation

ẋ2 = L22x2 +B2u,

y = BT
2 x2.

(4.2)

Note that this equation can be interpreted as the discretized heat equation in
the set of divergence-free velocities, see Emmrich and Mehrmann (2013).

In the system (4.2) the skew-symmetric interconnection matrix is zero. Thus,
FCRM cannot be applied directly as discussed in the previous section. Concern-
ing ECRM, the splitting of the dynamic state is provided by Lyapunov balanc-
ing. The transformation matrices are computed by the Square-Root Algorithm
(Antoulas, 2005). Note that in this case the reduced model by ECRM is equiv-
alent to the one obtained by using Balanced Truncation, due to the symmetry
of the system matrix and the relation of the input and output matrices.

Oseen equations

A flow model that is closer to the nonlinear Navier-Stokes equations is given by
the Oseen equations

∂tv = −(a · ∇)v + ν∆v −∇p+ f, in Ω× (0, T ],

0 = − div v, in Ω× (0, T ],

v = 0, on ∂Ω× (0, T ],

v = v0, in Ω× {0}.

The Oseen equations differ from the Stokes equations by the additional con-
vective term with driving velocity a : Ω → R2. The associated spatially semi-
discretized pHDAE for x = [vTh pTh ]

T is given by

[
I 0
0 0

]

ẋ =

([
A −DT

D 0

]

−

[

−L̃ 0
0 0

])

x+

[
F
0

]

u,

y = BTx, BT =
[
FT 0

]
,

where the appropriately discretized convective term is decomposed into its skew-
symmetric part A and its symmetric part. The last forms, together with the
discrete Laplacian, the symmetric negative definite matrix L̃.
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Analogously to the index reduction performed for the Stokes equations, we
obtain x1 = 0 as well as ZTx3 = (A12 + L̃12)x2 + B1u. The underlying ODE
and the output equation are given by

ẋ2 = (A22 − (−L̃22))x2 +B2u,

y = BT
2 x2.

(4.3)

In the system (4.3) the skew-symmetric interconnection matrix is prescribed
by A22 which, depending on the discretization scheme, may or may not be in-
vertible. If it is invertible, then, in contrast to the Stokes problem, FCRM can be
applied for model order reduction. For ECRM and FCRM the balancing trans-
formations may be computed via the Balancing Free Square-Root Algorithm
(Varga, 1991) to preserve the structure and to avoid creating an additional
energy matrix.

Remark 4 In the numerical examples the flow domain Ω = (0, 1)2 is partitioned
into uniform quadratic cells of edge length h = 1/M , M ∈ N. We use finite
differences on a staggered grid, where the velocity components v = [vξ vη]T

are evaluated at the center of the cell faces, to which they are normal and the
pressure is taken at the cell centers. This procedure provides small discretization
stencils and ensures numerical stability. The unknowns are

vξi,j+0.5(t) ≈ vξ(ih, (j + 0.5)h, t), i = 1, ...,M − 1, j = 0, ....,M − 1

vηi+0.5,j(t) ≈ vη((i+ 0.5)h, jh, t), i = 0, ...,M − 1, j = 1, ....,M − 1

pi+0.5,j+0.5(t) ≈ p((i+ 0.5)h, (j + 0.5)h, t), i, j = 0, ...,M − 1,

for t ∈ [0, T ]. Since the pressure is non-unique in the flow equations, we fix
without loss of generality the value pM−0.5,M−0.5(t) = 0 for the numerical so-
lution and discard this quantity from the unknowns. The unknowns are ordered
row-wise (and for the velocity component-wise) in the vectors vh(t) ∈ Rnv and
ph(t) ∈ Rnp , where nv = 2M(M − 1) and np = M2 − 1, yielding the state
x = [vTh pTh ]

T : [0, T ] → Rn, n = 3M2 − 2M − 1, of the pHDAE systems.

We illustrate the model reduction techniques by comparing the approxima-
tion quality of their reduced transfer functions for both flow problems. The
presented results are given for the example flow setup, where we use a random
normally distributed input matrix F ∈ (N (0, 102))nv×1, the dynamic viscosity
ν = 1 and, in the case of the Oseen equations, the constant convective velocity
a ≡ [1 1]T . When applying the spatial resolution of M = 23, the states have
the size of n = 1540 for the full order pHDAE models and of n2 = 484 for the
underlying ODEs to be reduced. Figure 4.1 shows the relative errors in the
spectral norm for the reduced models of size r = 16 and in the H∞-norm for
r ∈ [2, 20]. The results of MM are similar for the Stokes and Oseen equations.
As expected, MM at s0 = ∞ and at s0 = 0 yields only negligibly small errors for
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Figure 4.1. Flow problems: Stokes (top) and Oseen (bottom). Relative errors for
ECRM, FCRM as well as MM at s0 = ∞ and at s0 = 0, plotted over frequency
(left) and in H∞-norm over reduced state size r (right)

high or low frequencies, respectively. In the H∞-norm MM at s0 = 0 performs
better than MM at s0 = ∞. For the Stokes problem, the error of ECRM is small
for all frequencies, oscillating around O(10−13), whereas for the Oseen problem
it decreases from O(10−8) to O(10−13) for increasing frequencies. In the H∞-
norm ECRM outperforms MM for both flow problems. The same error trends
can be observed in the H2-norm. Consequently, ECRM yields better reduced
models than the moment matching methods globally, as even for low and high
frequencies the relative errors only differ slightly from the respective errors of
MM. FCRM is not applicable to the Stokes problem and to the Oseen prob-
lem only if the invertibility requirement on the skew-symmetric interconnection
submatrix Jss

11 is satisfied. This implies in this example setup that the size r of
the reduced model has to be even. Here, FCRM yields smaller errors for low
frequencies than ECRM, but for high frequencies the error increases monoton-
ically because of the additional feed-through term in the reduced system, see
also Fig. 4.2. This behavior originates from the limiting behavior of the transfer
function G, which converges to the feed-through term with the frequency going
to infinity. However, in the H∞-norm FCRM even outperforms ECRM, whereas
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Figure 4.2. Error behavior of FCRM for very high frequencies due to the addi-
tional feed-through term in the reduced Oseen model

the H2-norm is unbounded for systems with nonzero feed-through terms.

Remark 5 The approximation quality of the model reduction techniques is cer-
tainly also visible in the error behavior in the time domain. Figure 4.3 illustrates
the behavior of the relative output errors over time for the setting (i.e., problem
and reduction parameters) stated above where – as an example – a fluid flow,
initially steady v0 = 0, is excited by a smooth external force oscillating over
time on a local spatial support

f(x, y, t) = sin(2πωt) [1 1]T in Df × [0, T ]

with Df = {(x, y) ∈ Ω | ‖(x, y) − (0.5, 0.5)‖1 < 0.11}, T = 1 and ω = 2.
For the time-integration an implicit midpoint rule with step size τ = 10−2 is
used. The power conservation based reduction techniques yield generally very
good approximations (i.e., errors of order O(10−14) for the Stokes and of order
O(10−9) for the Oseen problem), whereas the performance of moment matching
depends crucially on the parameter s0, which should be chosen in accordance to
the problem. Here, for an input of low frequency, MM at s0 = 0 gives similar
errors as ECRM and FCRM. In contrast, the errors of MM at s0 = ∞ are
worse by several orders of magnitude. This behavior of the MM variants turns
round when considering high-frequency inputs (large ω).
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Figure 4.3. Relative output errors over time of the reduction methods for Stokes
(left) and Oseen problem (right) with input u(t) = sin(4πt).

4.3. Damped mass-spring system

The holonomically constrained damped mass-spring system constitutes a multi-
body problem that describes the one-dimensional dynamics of g connected mass
points in terms of their positions q : [0, T ] → R

g, velocities v : [0, T ] → R
g and

a Lagrange multiplier λ : [0, T ] → R, see Fig. ??. In the chain of mass points
the ith mass of weight mi is connected to the (i + 1)st mass by a spring and
a damper with constants ki and di and also to the ground by a spring and a
damper with the constants κi and δi, respectively, where mi, ki, di, κi, δi > 0.
Furthermore, the first and the last mass points are connected by a rigid bar.
The vibrations are driven by an external force u : [0, T ] → R (control input)
acting on the first mass point. The resulting DAE system of size n = 2g + 1
is not port-Hamiltonian and has differentiation-index three. In the first order
formulation it is given by





I 0 0
0 M 0
0 0 0









q̇
v̇

λ̇



 =


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0 I 0
−K −D −GT

G 0 0









q
v
λ



+





0
F
0



 u

with mass matrix M = diag(m1, . . . ,mg), tridiagonal stiffness and damping
matrices K, D ∈ Rg×g, constraint matrix G = [1 0 . . . 0 − 1] ∈ R1×g, and
input matrix F = e1 ∈ Rg×1. Assuming K and D to be symmetric posi-
tive semi-definite, the multibody problem can be formulated as a pHDAE of
differentiation-index two by replacing the algebraic constraint Gq = 0 by its
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first derivative Gv = 0 and adding an appropriate output equation,


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B

u (4.4)

y = BTQx.

Analytically, the original system and (4.4) are equivalent if consistent initial
conditions are chosen. Obviously, J = −JT , R = RT ≥ 0, ETQ = QTE ≥ 0
and QTRQ ≥ 0 hold. But note that (J −R)Q is singular, so that for s = 0 the
matrix (sE − (J −R)Q) is not invertible.

Figure 4.4. Damped mass-spring system with holonomic constraint (from
Mehrmann and Stykel, 2005)

The structure of the equations simplifies a further index reduction for (4.4)
analogously to that for the flow problems. The singular value decomposition
of GT , i.e., GV = [Z 0] with orthogonal matrix V = [V1 V2], V1 ∈ Rg×1,
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Figure 4.5. Mass-spring system: index-reduced formulation (4.4), n = 2g + 1
(top) and index-reduced formulation via minimal extension (4.6), n = 2g + 2
(bottom). Relative errors of reduced transfer functions plotted over frequency
(left) and in H∞-norm over reduced state size r (right). (MM is performed at
s0 = ∞ as well as at s0 = 10−10 for (4.4) and at s0 = 0 for (4.6).)

V2 ∈ Rg×(g−1) as well as Z ∈ R1×1 invertible, yields
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The last equation, Zv1 = 0, implies that v1 = 0. Differentiating this equation
and inserting it into the second equation yields the hidden constraint for the
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Lagrange multiplier

ZTλ = −M12v̇2 − V T
1 Kq −D12v2 +B1u,

which also imposes a consistency condition for the initial value. The underlying
ODE of size n1 = 2g − 1 together with the output equation are given by

[
I 0
0 M22

] [
q̇
v̇2

]

=

([
0 V2

−V T
2 0

]

−

[
0 0
0 D22

])[
K 0
0 I

] [
q
v2

]

+

[
0
B2

]

u,

y =
[
0 BT

2

]
[
K 0
0 I

] [
q
v2

]

.

(4.5)

We present numerical results for an example setup, where the parameters
of the mass-spring system are set to be mi = 100 for i = 1, ..., g and ki =
κj = 2, di = δj = 5 for i = 1, ..., g − 1, j = 2, ..., g − 1, as well as κ1 =
κg = 4, and δ1 = δg = 10. The choice of g = 6000 yields a state of size
n = 12001 for the original DAE and of size n1 = 11999 for the underlying ODE
to be reduced. Since the dimension is odd, the skew-symmetric interconnection
matrix is singular and also the relevant submatrix for FCRM is singular as
well. But MM at almost all s0 ∈ C\{0} and ECRM can be applied. Figure
4.5 shows the respective relative errors of the transfer functions in spectral
norm for the reduced size r = 10 and in the H∞-norm for r ∈ [2, 20]. As
expected, MM at s0 = ∞ and s0 = 10−10 yields outstanding approximations
(errors of order O(10−15)) for high and low frequencies, respectively. ECRM,
in contrast, provides a uniformly good approximation quality of order O(10−5),
independently of the chosen frequency. In the H∞- and the H2-norms it even
outperforms the moment matching versions by one up to two orders.

Remark 6 Alternatively to (4.4), the damped mass-spring system can be also
formulated by keeping the original constraint Gq = 0 and adding the additional
constraint Gv = 0 to match the symmetry structure. This is called index reduc-
tion by minimal extension, see Kunkel and Mehrmann (2006), and reduces the
differentiation-index to two in the system
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(4.6)

The resulting system (4.6) is of size n = 2g + 2, has a regular system matrix
and a regular matrix pencil, but is not in port-Hamiltonian form, as the system
matrix cannot be decomposed in a matrix product of the form (J−R)Q. However,
using again the singular value decomposition of GT , solving the last equation and
inserting the derivative yields a pHODE for [qT2 vT2 ] : [0, T ] → Rn1 , n1 = 2(g−1)
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of the form

[
I 0
0 M22

] [
q̇2
v̇2

]

=

([
0 I
−I 0

]

−

[
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0 D22

])[
K22 0
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] [
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+

[
0
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u,

y =
[
0 BT

2

]
[
K22 0
0 I

] [
q2
v2

] (4.7)

whose interconnection matrix is invertible. The other variables satisfy v1 = q1 =
λ2 = 0 and ZTλ1 = −M12v̇2 −K12q2 −D12v2 +B1u. To this formulation, also
FCRM and MM at s0 = 0 are applicable. While ECRM and MM at s0 = ∞
yield analogous results independently of the problem formulation, MM at s0 = 0
for (4.7) provides a slightly better H∞-approximation than MM at s0 = 10−10

for (4.5). FCRM shows, in general, a similar approximation behavior as ECRM
but suffers from an error drift off for high frequencies caused by its additional
feed-through terms (see Fig. 4.5).

5. Conclusion

The power conservation methods (ECRM and FCRM) as well as moment match-
ing via Galerkin projections are established structure-preserving model reduc-
tion techniques for standard port-Hamiltonian systems of ordinary differen-
tial equations. In this paper, we have extended them to handle also port-
Hamiltonian differential-algebraic systems of differentiation-index one or two.
By making use of an appropriate decoupling of differential and algebraic vari-
ables, the dynamic state is reduced, while the properties and all explicit and
hidden constraints of the pHDAE are preserved. The performance of the tech-
niques has been illustrated for benchmark problems arising from spatially dis-
cretized flow problems and multibody systems. ECRM shows similarities to
Balanced Truncation, if a Lyapunov balancing is performed. Therefore, as ex-
pected, ECRM outperforms moment matching when studying the reduction
errors in H∞- and/or H2-norms, whereas moment matching yields better local
approximations in the spectral norm. The performance of FCRM is compa-
rable to ECRM, but it may suffer from an error increase for high frequencies,
caused by the feed-through terms, generated in the reduced model. Moreover,
its applicability is limited.
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