PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ion etching of HgCdTe : properties, patterns and use as a method for defect studies

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Analysis is performed of the contemporary views on the effect of ion etching (ion-beam milling and reactive ion etching) on physical properties of HgCdTe and on the mechanisms of the processes responsible for modification of these properties under the etching. Possibilities are discussed that ion etching opens for defect studies in HgCdTe, including detecting electrically neutral tellurium nanocomplexes, determining background donor concentration in the material of various origins, and understanding the mechanism of arsenic incorporation in molecular-beam epitaxy-grown films.
Słowa kluczowe
Rocznik
Strony
148--170
Opis fizyczny
Bibliogr. 99 poz., il., tab., wykr.
Twórcy
autor
  • Scientific Research Company "Carat", Lviv 79031, Ukraine
  • National Research Tomsk State University, Tomsk 634050, Russia
  • Ioffe Institute, St.-Petersburg 194021, Russia
  • ITMO University, St.-Petersburg 197101, Russia
  • National Research Tomsk State University, Tomsk 634050, Russia
  • National Research Tomsk State University, Tomsk 634050, Russia
  • P. Sahaydachnyi National Army Academy, Lviv 79012, Ukraine
  • Center for Microelectronics and Nanotechnology of the University of Rzeszow, Rzeszow 35-310, Poland
Bibliografia
  • [1] W. D. Lawson, S. Nielsen, E. H. Putley, A. S. Young, Preparation and properties of HgTe and mixed crystals of HgTe-CdTe, J. Phys. Chem. Solids 9 (1959) 325–329.
  • [2] A. D. Shneider, I. V. Gavrishchak, Structure and properties of the HgTe-CdTe system, Sov. Phys. Solid State 2 (1960) 2079–2081.
  • [3] A. Rogalski, Infrared Photodetectors, second edition, CRC Press, Boca Raton, 2011, pp. 876.
  • [4] K. Fischer, Method of ion etching Cd-Hg-Te semiconductors, US Patent 4128467 (1978).
  • [5] R. B. Withers, Method of manufacturing infrared detector elements, US Patent 4301591 (1979).
  • [6] U. Solzbach, H. J. Richter, Sputter cleaning and dry oxidation of CdTe, HgTe and Hg1−xCdxTe surface, Surf. Sci. 97 (1980) 191–195.
  • [7] A. J. Stoltz, M. Jaime-Vasquez, J. D. Benson, J. B. Varesi, M. Martinka, Examination of the effect of high-density plasmas on surface of HgCdTe, J. Electron. Mater. 35 (2006) 1461–1464.
  • [8] E. P. G. Smith, J. K. Gleason, L. T. Pham, E. A. Patten, M. S. Welkowsky, Inductively coupled plasma etching of HgCdTe, J. Electron. Mater. 32 (2003) 816–820.
  • [9] E. P. G. Smith, G. M. Venzor, P. M. Goetz, J. B. Varesi, L. T. Pham, E. A. Patten, W. A. Radford, S. M. Jonson, A. J. Stoltz, J. D. Benson, J. H. Dinan, Scalability of dry-etch processing for small unit-cell HgCdTe focal-plane-arrays”, J. Electron. Mater. 32 (2003) 821–826.
  • [10] V. Srivastav, R. Pal, H. P. Vyas, Overview of etching technologies used forHgCdTe, Opto-Electron. Rev. 13 (2005) 197–211.
  • [11] J. T. M. Wotherspoon, Methods of manufacturing a detector device, UK Patent GB 2095898 (1981).
  • [12] V. I. Ivanov-Omskii, K. D. Mynbaev, Modification of Hg1−xCdxTe properties by low-energy ions, Semiconductors 37 (2003) 1127–1150.
  • [13] D. Shaw and P. Capper, “Conductivity Type Conversion”, in “Mercury Cadmium Telluride: Growth, Properties and Applications”, ed. by P. Capper, Wiley Series in Materials for Electronic and Optoelectronic Applications, P. Capper, S. Kasap, A. Willoughby, eds., (Chichester, J. Wiley & Sons, 2011), p. 297.
  • [14] D. Shaw, P. Capper, The kinetics of conductivity type conversion in HgCdTe by ion beam milling, J. Mater. Sci. Mater. Electron. 19 (2008) 965–972.
  • [15] I. I. Izhnin, S. A. Dvoretsky, N. N. Mikhailov, Yu. G. Sidorov, V. S. Varavin, K. D. Mynbaev, M. Pociask, Conductivity type conversion in ion-milled p-Hg1−xCdxTe:As heterostructures grown by molecular beam epitaxy, Appl. Phys. Lett. 91 (2007) 132106.
  • [16] P. Brogowski, H. Mucha, J. Piotrowski, Modification of mercury cadmium telluride, mercury manganese telluride, mercury zinc telluride by ion etching, Phys. Status Solidi (a) 114 (1989) K3 7–K 40.
  • [17] S. Rolland, R. Granger, R. Triboulet, p-to-n conversion in Hg1−xZnxTe by ion beam milling effect, J. Cryst. Growth 117 (1992) 208–212.
  • [18] N. N. Berchenko, V. V. Bogoboyashchiy, I. I. Izhnin, V. A. Yudenkov, Properties of n-layers formed by low energy ion beam milling of chalcogenides epitaxial films, Phys. Status Solidi (c) (2003) 872–874.
  • [19] N. N. Berchenko, V. V. Bogoboyashchiy, I. I. Izhnin, M. Pociask, E. M. Sheregii, V. A. Yudenkov, Influence of the low energy ion beam milling on the electrical properties of InSb, Phys. Status Solidi (c) 2 (2005) 1418–1422.
  • [20] A. V. Dvurechenskii, V. G. Remesnik, I. A. Ryazantsev, N. Kh. Talipov, Inversion of the conduction of CdxHg1−xTe films subjected to a plasma treatment, Semiconductors 27 (1993) 90–92.
  • [21] M. V. Blackman, D. E. Charlton, M. D. Jenner, D. R. Purdy, J. T. M. Wotherspoon, C. T. Elliott, A. M. White, Type conversion in CdHgTe by ion beam treatment, Electron. Lett. 23 (1987) 978–979.
  • [22] P. Brogowski, J. Rutkowski, J. Piotrowski, H. Mucha, Ion beam milling effect on surface properties of HgCdTe, Electron Technol. 24 (1991) 93–96.
  • [23] J. L. Elkind, Ion mill damage in n-HgCdTe, J. Vac. Sci. Technol. B 10 (1992) 1460–1465.
  • [24] E. Belas, P. Höschl, R. Grill, J. Franc, P. Moravec, K. Lischka, H. Sitter, A. Toth, Deep p-n junction in Hg1−xCdxTe created by ion milling, Semicond. Sci. Technol. 8 (1993) 1695–1699.
  • [25] E. Belas, J. Franc, A. Toth, P. Moravec, R. Grill, H. Sitter, P. Höschl, Type conversion of p-(HgCd)Te using H2/CH4 and Ar reactive ion etching, Semicond. Sci. Technol. 11 (1996) 1116–1120.
  • [26] E. Belas, P. Höschl, R. Grill, J. Franc, P. Moravec, K. Lischka, H. Sitter, A. Toth, Ultrafast diffusion of Hg in Hg1−xCd−Te (x ∼ 0.21), J. Cryst. Growth 138 (1994) 940–943.
  • [27] E. Belas, R. Grill, J. Franc, A. Toth, P. Höschl, H. Sitter, P. Moravec, Determination of the migration energy of Hg interstitials in (HgCd)Te from ion milling experiments, J. Cryst. Growth 159 (1996) 1117–1122.
  • [28] E. Belas, R. Grill, J. Franc, P. Moravec, R. Varghová, P. Höschl, H. Sitter, A. L. Toth, Dynamics of native point defects in H2 and Ar plasma-etched narrow gap (HgCd)Te, J. Cryst. Growth 224 (2001) 52–58.
  • [29] G. Bahir, E. Finkman, Ion beam milling effect on electrical properties of HgCdTe, J. Vac. Sci. Technol. A 7 (1989) 348–353.
  • [30] J. F. Siliquini, J. M. Dell, C.A. Musca, L. Faraone, Scanning laser microscopy of reactive ion etching induced n-type conversion in vacancy-doped p-type HgCdTe, Appl. Phys. Lett. 70 (1997) 3443–3445.
  • [31] V. I. Ivanov-Omskii, K. E. Mironov, K. D. Mynbaev, Electrophysical properties of CdxHg1–xTe subjected to ion-beam treatment, Sov. Phys. Semicond. 24 (1990) 1379–1381.
  • [32] V. I. Ivanov-Omskii, K. E. Mironov, K. D. Mynbaev, Hg1−xCdxTe doping by ion-beam treatment, Semicond. Sci. Technol. 8 (1993) 634–637.
  • [33] K. D. Mynbaev, N. L. Bazhenov, V. A. Smirnov, V. I. Ivanov-Omskii, Electrical properties of CdxHg1−xTe and ZnxCdyHg1−x−yTe modified by low-energy ion bombardment, Tech. Phys. Lett. 28 (2002) 955–957.
  • [34] I. Izhnin, V. Bogoboboyashchyy, A. Kotkov, A. Moiseev, N. Grishnova, Type conductivity conversion in MOCVD CdxHg1−xTe/GaAs hetero-structures under ion milling, Proc. SPIE 5957 (2005) 595716.
  • [35] R. Haakenaasen, T. Colin, H. Steen, L. Trosdahl-Iversen, Electron beam induced current study of ion beam milling type conversion in molecular beam epitaxy vacancy-doped CdxHg1−xTe, J. Electron. Mater. 29 (2000) 849–852.
  • [36] R. Haakenaasen, T. Moen, T. Colin, H. Steen, L. Trosdahl-Iversen, Depth and lateral extension of ion milled p-n junctions in CdxHg1−xTe from electron beam induced current measurements, J. Appl. Phys. 91 (2002) 427–432.
  • [37] V. V. Bogoboyashchyy, S. A. Dvoretsky, I. I. Izhnin, N. N. Mikhailov, Yu.G. Sidorov, F. F. Sizov, V. S. Varavin, V. A. Yudenkov, Properties of MBE CdxHg1−xTe/GaAsstructures modified by ion-beam milling, Phys. Status Solidi (c) 1 (2004) 355–359.
  • [38] D. Chandra, H. F. Schaake, F. Aqariden, T. Teheranim, A. Kinch, P. D. Dreiske, D. F. Weirauch, H. D. Shih, p to n conversion in SWIR mercury cadmium telluride with ion milling, J. Electron. Mater. 35 (2006) 1470–1473.
  • [39] D. Chandra, H. F. Schaake, M. A. Kinch, P. D. Dreiske, T. Teherani, F. Aqariden, D. F. Weirauch, H. D. Shih, Deactivation of arsenic as an acceptor by ion implantation and reactivation by low-temperature anneal, J. Electron. Mater. 34 (2005) 864–867.
  • [40] V. V. Bogoboyashchii, I. I. Izhnin, Mechanism for conversion of the type conductivity in p-Hg1−xCdxTe crystals upon bombardment by low-energy ions, Russ. Phys. J. 43 (2000) 627–636.
  • [41] V. V. Bogoboyashchyy, I. I. Izhnin, K. D. Mynbaev, The nature of compositional dependence of p-n junction depth in ion-milled p-CdxHg1−xTe, Semicond. Sci. Technol. 21 (2006) 116–123.
  • [42] V. V. Bogoboyashchii, A. I. Elizarov, V. I. Ivanov-Omskii, V. R. Petrenko, V. A. Petryakov, Kinetics of establishment of equilibrium between CdxHg1−xTe crystals and mercury vapour, Sov. Phys. Semicond. 19 (1985) 505–508.
  • [43] D. Shaw, P. Capper, Conductivity type conversion in Hg1−xCdxTe, J. Mater. Sci. Mater. Electron. 11 (2000) 169–177.
  • [44] V. V. Bogoboyashchyy, I. I. Izhnin, Mechanism for creation of the mercury diffusion source at type conductivity conversion in p-Hg1−xCdxTe under ion-beam milling, Proc. SPIE 5126 (2003) 427–433.
  • [45] A. Sher, M. A. Berding, M. Van Schlifgaarde, A. B. Chen, HgCdTe status review with emphasis on correlations, native defects and diffusion, Semicond. Sci. Technol. 6 (1991) C 59–C 70.
  • [46] C. M. Stahle, C. R. Helms, Ion sputter effects on HgTe, CdTe, and HgCdTe, J. Vac. Sci. Technol. A 10 (1992) 3239–3245.
  • [47] V. V. Bogoboyashchyy, K. R. Kurbanov, Reaction constants for main cationic native defects in narrow-gap Hg1−xCdxTe crystals, J. Alloys Compd. 371 (2004) 97–99.
  • [48] E. Belas, R. Grill, J. Franc, H. Sitter, P. Moravec, P. Hoschl, A. L. Toth, Formation and propagation of p-n junction in p-(HgCd)Te caused by dry etching, J. Electron. Mater. 31 (2002) 738–742.
  • [49] M. Pociask, I. I. Izhnin, S. A. Dvoretsky, Yu. G. Sidorov, V. S. Varavin, N. N. Mikhailov, N. H. Talipov, K. D. Mynbaev, A. V. Voitsekhovkii, Ion milling-induced conductivity-type conversion in p-type HgCdTe MBE-grown films with graded-gap surface layers, Semicond. Sci. Technol. 25 (2010) 065012.
  • [50] M. Pociask, I. I. Izhnin, A. I. Izhnin, S. A. Dvoretsky, N. N. Mikhailov, Yu. G. Sidorov, V. S. Varavin, K. D. Mynbaev, Donor doping of HgCdTe for LWIR and MWIR structures fabricated with ion milling, Semicond. Sci. Technol. 24 (2009) 025031.
  • [51] I. I. Izhnin, I. A. Denisov, N. A. Smirnova, M. M. Pociask, K. D. Mynbaev, Ion milling-assisted study of defect structure of HgCdTe layers grown by liquid phase epitaxy on CdZnTe substrates, Opto-Electron. Rev. 18 (2010) 328–331.
  • [52] I. I. Izhnin, A. I. Izhnin, H. V. Savytskyy, M. M. Vakiv, Y. M. Stakhira, O. I. Fitsych, M. V. Yakushev, A. V. Sorochkin, I. V. Sabinina, S. A. Dvoretsky, Yu. G. Sidorov, V. S. Varavin, M. Pociask-Bialy, K. D. Mynbaev, Defect structure of HgCdTe films grown by molecular-beam epitaxy on Si substrates, Semicond. Sci. Technol. 27 (2012) 035001.
  • [53] J. Antoszewski, C. A. Musca, J. M. Dell, L. Faraone, Characterization of Hg0.7Cd0.3Te n- on p-type structures obtained by reactive ion etching induced p- to n conversion, J. Electron. Mater. 29 (2000) 837–840.
  • [54] T. Nguen, J. Antoszewski, C. A. Musca, D. A. Redfern, J. M. Dell, L. Faraone, Transport properties of reactive-ion-etching-induced p-to-n type converted layers in HgCdTe, J. Electron. Mater. 31 (2002) 652–659.
  • [55] G. P. Carey, S. Cole, T. Yamashita, J.A. Silberman, W. E. Spicer, J. A. Wilson, TEM investigation of the differences in ion milling induced damage of Hg1−xCdxTe and CdTe heterojunctions, J. Vac. Sci. Technol. A 3 (1985) 255–258.
  • [56] M. A. Lunn, P. S. Dobson, Ion beam milling of Cd0.2Hg0.8Te, J. Cryst. Growth 73 (1985) 379–384.
  • [57] V. Savitsky, L. Mansurov, I. Fodchuk, I. I. Izhnin, I. Virt, M. Lozynska, A. Evdokimenko, Peculiarities of MCT etching in RF mercury glow discharge, Proc. SPIE 3725 (1998) 299–303.
  • [58] I. I. Izhnin, K. D. Mynbaev, M. Pociask, R. Ya. Mudryy, A. V. Voitsekhovskii, N. Kh. Talipov, Long-term room-temperature relaxation of the defects induced in (Hg,Cd)Te by low-energy ions, Physica B 404 (2009) 5025–5027.
  • [59] M. Pociask, I. I. Izhnin, S. A. Dvoretsky, N. N. Mikhailov, Yu. G. Sidorov, V. S. Varavin, K. D. Mynbaev, V. I. Ivanov-Omskii, Electrical properties of n-HgCdTe heteroepitaxial layers modified by ion milling, Semiconductors 42 (2008) 1413–1415.
  • [60] J. F. Siliquini, J. M. Dell, C. A. Musca, L. Faraone, J. Piotrowski, Characterisation of reactive-ion-etching-induced type-conversion in p-type HgCdTe using scanning laser microscopy, J. Cryst. Growth 184–185 (1998) 1219–1222.
  • [61] J. F. Siliquini, J. M. Dell, C. A. Musca, E. P. G. Smith, L. Faraone, J. Piotrowski, Estimation of doping density in HgCdTe p-n junctions using scanning laser microscopy, Appl. Phys. Lett. 72 (1998) 52–54.
  • [62] E. P. G. Smith, J. F. Siliquini, C. A. Musca, J. Antoszewski, J. M. Dell, L. Faraone, J. Piotrowski, Mercury annealing of reactive ion etching induced p- to n-type conversion in extrinsically doped p-type HgCdTe, J. Appl. Phys. 83 (1998) 5555–5557.
  • [63] K. D. Mynbaev, V. I. Ivanov-Omskii, Doping of epitaxial layers and heterostructures based on HgCdTe, Semiconductors 40 (2006) 1–21.
  • [64] V. V. Bogoboyashchii, A. P. Vlasov, I. I. Izhnin, Mechanism for conversion of the conductivity type in arsenic-doped p-Hg1−xCdxTe subject to ionic etching, Russ. Phys. J. 44 (2001) 61–70.
  • [65] N. N. Berchenko, V. V. Bogoboyashchiy, I. I. Izhnin, A. P. Vlasov, Defect structurere building by ion beam milling of As and Sb doped p-CdxHg1−xTe, Phys. Status Solidi (b) 229 (2002) 279–282.
  • [66] N. N. Berchenko, V. V. Bogoboyashchiy, A. P. Vlasov, I. I. Izhnin, Yu. S. Ilyina, Type conductivity conversion in As, Sb doped p-CdxHg1−xTe under ion beam milling, Surf. Coat. Technol. 158–159 C (2002) 732–736.
  • [67] V. V. Bogoboyashchyy, I. I. Izhnin, K. D. Mynbaev, M. Pociask, A. P. Vlasov, Relaxation of electrical properties of n-type layers formed by ion milling in epitaxial HgCdTe doped with V-group acceptors, Semicond. Sci. Technol. 21(2006) 1144–1149.
  • [68] E. Belas, V. V. Bogoboyashchii, R. Grill, I. I. Izhnin, A. P. Vlasov, V. A. Yudenkov, Time relaxation of points defects in p- and n-(HgCd)Te after ion beam milling, J. Electron. Mater. 32 (2003) 698–702.
  • [69] M. Pociask, I. I. Izhnin, S. A. Dvoretsky, N. N. Mikhailov, Yu. G. Sidorov, V. S. Varavin, K. D. Mynbaev, E. Sheregii, Ion milling-assisted study of defect structure of acceptor-doped HgCdTe heterostructures grown by molecular beam epitaxy, Semicond. Sci. Technol. 23 (2008) 095001.
  • [70] I. Izhnin, S. Dvoretsky, N. Mikhailov, Yu. Sidorov, V. Varavin, M. Pociask, K. Mynbaev, R. Jakiela, G. Savitskyy, Arsenic incorporation in MBE-grown HgCdTe studied with the use of ion milling, Phys. Status Solidi (c) 7 (2010) 1618–1620.
  • [71] I. I. Izhnin, S. A. Dvoretsky, K. D. Mynbaev, O. I. Fitsych, N. N. Mikhailov, V. S. Varavin, M. Pociask-Bialy, A. V. Voitsekhovskii, E. Szeregii, Defect study in molecular beam epitaxy-grown HgCdTe films with activated and unactivated arsenic, J. Appl. Phys. 115 (2014) 163501.
  • [72] I. I. Izhnin, A. V. Voitsekhovski, A. G. Korotaev, K. D. Mynbaev, V. S. Varavin, S. A. Dvoretsky, N. N. Mikhailov, M. V. Yakushev, A. Yu. Bonchyk, H. V. Savytskyy, E. I. Fitsych, Long-term stability of electron concentration in HgCdTe-based p-n junctions fabricated with ion etching, Infrared Phys. Technol. 73 (2015)158–165.
  • [73] I. I. Izhnin, H. V. Savytskyy, O. I. Fitsych, J. Piotrowski, K. D. Mynbaev, Electrical properties of HgCdTe films grown by MOCVD and doped with As, Opto-Electron. Rev. 21 (2013) 220–226.
  • [74] N. N. Berchenko, V. V. Bogoboyashchiy, I. I. Izhnin, K. R. Kurbanov, A. P. Vlasov, V.A. Yudenkov, Type conductivity conversion in p-CdxHg1−xTe, Opto-Electron. Rev. 11 (2003) 93–98.
  • [75] M. A. Kinch, D. Chandra, H. F. Schaake, H. D. Shih, F. Aqariden, Arsenic-doped mid-wavelength infrared HgCdTe photodiodes, J. Electron. Mater. 33 (2004) 590–595.
  • [76] I. M. Baker, C. D. Maxey, Summary of HgCdTe 2D array technology in the UK, J. Electron. Mater. 30 (2001) 682–689.
  • [77] V. V. Bogoboyashchyy, I. I. Izhnin, K. R. Kurbanov, Type of conductivity conversion in CdxHg1−xTe single crystal doped with 1 group dopants under ion milling, Appl. Phys. (2) (2005) 48–53.
  • [78] V. V. Bogoboyashchyy, A. I. Elizarov, I. I. Izhnin, Conversion of conductivity type in Cu-doped Hg0.8Cd0.2Te crystals under ion beam milling, Semicond. Sci. Technol. 20 (2005) 726–732.
  • [79] V. V. Bogoboyashchyy, I. I. Izhnin, M. Pociask, K. D. Mynbaev, V. I. Ivanov-Omskii, Conductivity type conversion under ion milling of narrow-gap HgCdTe crystals doped with Au and Ag, Semiconductors 41 (2007) 804–809.
  • [80] V. V. Bogoboyashchii, A. I. Elizarov, V. A. Petryakov, V. I. Stafeev, V. N. Severtsev, Investigation of copper diffusion in CdxHg1−xTe single-crystals, Sov. Phys. Semicond. 21 (1987) 893–894.
  • [81] K. Yang, Y. S. Lee, H. C. Lee, Annealing behavior of hydrogen-plasma-induced n-type HgCdTe, Appl. Phys. Lett. 87 (2005) 111905.
  • [82] I. I. Izhnin, Temperature stability of the IBM formed CdxHg1−xTe p-n structure, Proc. SPIE 3890 (1998) 519–522.
  • [83] I. I. Izhnin, V. V. Bogoboyashchyy, F. F. Sizov, Regularities of the CdxHg1−xTe p-n junction formation by ion milling, Proc. SPIE 5957 (2005) 595713.
  • [84] M. Pociask, I. I. Izhnin, K. D. Mynbaev, S. A. Dvoretsky, N. N. Mikhailov, Yu. G. S idorov, V. S. Varavin, Blue-shift in photoluminescence of ion-milled HgCdTe films and relaxation of defects induced by the milling, Thin Solid Films 518 (2010) 3879–3881.
  • [85] X. Zha, J. Shao, J. Jiang, W. Y. Yang, Blueshift in photoluminescence and photovoltaic spectroscopy of the ion-milling formed n-on-p HgCdTe photodiodes, Appl. Phys. Lett. 90 (2007) 201112.
  • [86] I. I. Izhnin, V. V. Bogoboyashchyy, F. F. Sizov, Electrical characteristics relaxation of ion milled MCT layers, Proc. SPIE 5881 (2005) 58810U.
  • [87] I. I. Izhnin, K. D. Mynbaev, A. V. Voitsekhovsky, A. G. Korotaev, O. I. Fitsych, M. Pociask-Bialy, S. A. Dvoretsky, Background donor concentration in HgCdTe, Opto-Electron. Rev. 23 (2015) 200–207.
  • [88] I. I. Izhnin, A. I. Izhnin, H. V. Savytskyy, O. I. Fitstch, N. N. Mikhailov, V. S. Varavin, S. A. Dvoretsky, Yu. G. Sidorov, K. D. Mynbaev, Defects in HgCdTe grown by molecular beam epitaxy on GaAs substrates, Opto-Electron. Rev. 20 (2012) 62–65.
  • [89] I. I. Izhnin, K. D. Mynbaev, M. V. Yakushev, A. I. Izhnin, E. I. Fitsych, N. L. Bazhenov, A. V. Shilyaev, H. V. Savitskyy, R. Jakiela, A. V. Sorochkin, V. S. Varavin, S. A. Dvoretsky, Electrical and optical properties of CdHgTe films grown by molecular-beam epitaxy on silicon substrates, Semiconductors 46 (2012) 1341–1345.
  • [90] M. M. Pociask, The study of HgCdTe MBE-grown structure with ion milling, Opto-Electron. Rev. 18 (2010) 338–341.
  • [91] A. I. Belogorokhov, N. A. Smirnova, I. A. Denisov, L. I. Belogorokhova, B. N. Levonovich, Raman scattering in CdHgTe epitaxial layers grown on CdZnTe substrates, Phys. Status Solidi (c) 7 (2010) 1624–1626.
  • [92] Z. Świątek, P. Ozga, I. I. Izhnin, E. I. Fitsych, A. V. Voitsekhovskii, A. G. Korotaev, K. D. Mynbaev, V. S. Varavin, S. A. Dvoretsky, N. N. Mikhailov, M. V. Yakushev, A.Y u. Bonchyk, H. V. Savytsky, Electrical and optical studies of defect structure of HgCdTe films grown by molecular beam epitaxy, Russ. Phys. J. 59 (2016) 442–445.
  • [93] J. W. Garland, C. Grein, S. Sivananthan, Arsenic p-doping of HgCdTe grown by molecular beam epitaxy (MBE): a solved problem? J. Electron. Mater. 42 (2013) 3331–3336.
  • [94] P. Ballet, B. Polge, X. Biquard, I. Alliot, Extended X-ray absorption fine structure investigation of arsenic in HgCdTe: the effect of the activation anneal, J. Electron. Mater. 38 (2009) 1726–1732.
  • [95] G. Yu. Sidorov, N. N. Mikhailov, V. S. Varavin, D. G. Ikusov, Yu. G. Sidorov, S. A. Dvoretskii, Effect of the arsenic cracking zone temperature on the efficiency of arsenic incorporation in CdHgTe films in molecular-beam epitaxy, Semiconductors 42 (2008) 651–654.
  • [96] M. Kinch, The future of infrared; III–Vs or HgCdTe? J. Electron. Mater. 44 (2015) 2969–2976.
  • [97] P. Capper, E. S. O’Keefe, C. Maxey, D. Dutton, P. Mackett, C. Butler, I. Gale, Matrix and impurity element distributions in CdHgTe (CMT) and (Cd,Zn) (Te,Se) compounds by chemical analysis, J. Cryst. Growth 161 (1996) 104–118.
  • [98] V. S. Varavin, V. V. Vasiliev, S. A. Dvoretsky, N. N. Mikhailov, V. N. Ovsyuk, Yu. G. Sidorov, A. O. Suslyakov, M. V. Yakushev, A. L. Aseev, HgCdTe epilayers on GaAs: growth and devices, Opto-Electron. Rev. 11 (2003) 99–111.
  • [99] V. S. Varavin, S. A. Dvoretsky, N. N. Mikhailov, Yu. G. Sidorov, Donor defects in epitaxial CdHgTe films grown with molecular-beam epitaxy method, Avtometriya (3) (2001) 9–19 (in Russian).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9617693f-7a93-4867-893c-834ed6bbad84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.