Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Biomass is the most important source of renewable energy in the Polish energy system. The most common technologies of energetic utilization of biomass in smali and middle scalę boilers is combustion of pellets and briauettes. This article is focused mainly on micronized biomass a special form of the pulverized fuel. This type of biomass can be utilized as fuel at middle and smali scalę boilers. Experimental investigations of the ignition process of such finely milled biomass is necessary for elaboration of guidelines for development of pulverized burners. Tests of the micronized cereal straw were performed at the pulverized fuel test stand. Different particie fractions were investigated in the rangę of 0-0.315 mm. Temperature range of the drop tube reactor was 600 - 1000°C. The tests showed that the micronized cereal straw has relatively Iow autoignition temperature (T = 410°C), comparing to other conventionally pulverized types of biomass with comparable sizes of particles. Moreover, combustion process of the micronized dust was characterized by the stand-off distance of the flame - ignition point. The experimental results were used for verification of numerical models of combustion of the micronized biomass fuel. The 2D and 3D calculations were performed using the ANSYS FLUENT code with the developed and modified at the Institute of Power Engineering model of combustion of the micronized fuel. Comparison of the numerical and experimental results was rewarding.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
29--40
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
- Institute of Power Engineering Thermal Processes Department Augustówka 36, 02-981 Warsaw, Poland, tel.: +48-22-3451150; fax: +48-22-6428378
autor
- Institute of Power Engineering Thermal Processes Department Augustówka 36, 02-981 Warsaw, Poland
autor
- Institute of Power Engineering Thermal Processes Department Augustówka 36, 02-981 Warsaw, Poland
Bibliografia
- [1] Sarozza A.E, et al. Characterising pulverised fuel ignition in a visual drop tube furnace by use of a high-speed imaging technique. Fuel Processing Technology. 2017, 157, pp. 1-11.
- [2] Kh atami R., Levendis Y. An overviewof coal rank influence on ignition and combustion phenomena at the particie level, Combustion and Flame, 164 (2016) 22-34.
- [3] Golec T., et al. Energy use of biomass through combustion and gasification, ed. Tomasz Golec, Institute of Power Engineering, Warsaw 2014, ISBN 978-83-7789-270-1
- [4] Świątkowski B. Wyznaczanie zakresu stabilności płomieni pyłowych, Politechnika Wrocławska Instytut Techniki Cieplnej i Mechaniki Płynów, PhD theses, Raport serii PREPRINTY nr 19/2007
- [5] Golec T., Milewska M., Świątkowski B. Metody obliczeniowe umożliwiające symulacje warunków spalania w modyfikowanych atmosferach gazowych, Chapter 3.1 Kotły pyłowe, Nowe Technologie Spalania i Oczyszczania Spalin, Collective work edited by Wojciech Nowak and Marek Pronobis, Gliwice 2010, ISBN 978-83-7335-683-2
- [6] Jovanovic R., Rasuob B., Stefanovica P., Cvetinovica D., Świątkowski B. Numerical investigation of pulverized coal jet flame characteristics under different oxy-fuel conditions", International Journal of Heat and Mass Transfer, 2013, vol.58, p. 654-662
- [7] Jovanovic R., Milewska A., Świątkowski B., Goanta A., Spliethoff H. Sensitivity analysis of different devolatilisation models on predicting ignition point position during pulverized coal combustion in 02/N2 and 02/C02 atmospheres, Fuel, Vol. 101, November 2012, 23-37
- [8] Fletcher T.H., et al. Prediction of Tar and Light Gas during Pyrolysis of Black Liquor and Biomass. Energy & Fuels. 2012, 26, pp. 3381-3387. [9] Chen, Y., et al. Modeling of Biomass Pyrolysis. 1998. Symposium International On Combustion. Vol. 27, pp. 1327-1334.
- [10] Niksa, S. Predicting the Rapid Devolatilization of Diverse Forms of Biomass with Bio-Flashchain. 2000. Proceedings of the Combustion Institute. Vol. 28, pp. 2727-2733.
- [11] Ranzi, E., et al. Chemical Kinetics of Biomass Pyrolysis. Energy & Fuels. 2008, 4, pp. 4292-4300
- [12] Gubba, S.R., et al. Influence of particie shape and internal thermal gradients of biomass particles on pulverised coal/biomass co-fired flames. Fuel Processing Technology. 2011, Vol. 92, 11, pp. 2185-2195
- [13] Ansys Fluent Theory Guide. s.1. : Ansys, Inc., 2013
- [14] Magnussen, B.F. and Hjertager, B.H. (1976). On mathematical modelling of turbulent combustion with special emphasis on soot formation and combustion, Proceedings of the 16th Symp. (Int.) on Combustion, pp. 719-729, The Combustion Institute, Pittsburgh, USA
- [15] Scharler, R. and Obernberger, I. (2000) .Numerical optimisation of biomass grate furnaces., Proceedings of the 5th European Conference on Industrial Furnaces and Boilers, Scharler, R. and Obernberger, I. (2000) .Numerical optimisation of biomass grate furnaces., Proceedings of the 5th European Conference on Industrial Furnaces and Boilers, April 2000, Porto, Portugal, INFUB, Rio Tinto, Portugal, ISBN-972-8034-04-0.
- [16] Robert S., Thomas F., Obernberger I. Modification of a Magnussen constant of the eddy dissipation model for biomass grate furnaces by means of hot gas in-situ FT-IR absorption spectroscopy, Progress in Computational Fluid Dynamics, Volume 3, Nos. 2.4, 2003
- [17] Zahirovic, S., Scharler, R., & Obernberger, I. Advanced CFD modelling of pulverised biomass combustion. In Proc. of the Internat. Conf. Science in Thermal and Chemical Biomass Conversion (pp. 267-283), 2006
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9614e76a-a91b-4123-afe9-046d18a00462