PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of an optical catalyst for cracking contaminating dyes in the wastewater of factories using indium oxide in nanometer and usage in agriculture

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Herein, the photocatalytic degradation of the Congo Red (CR) and Crystal Violet (CV) dyes in an aqueous solution were discussed in the presence of an indium(III) oxide (In2O3) as optical catalyst efficiency. The caproate bidentate indium(III) precursor complex has been synthesized and well interpreted by elemental analysis, molar conductivity, Fourier transform infrared (FT-IR), UV-Vis, and thermogravimetric (TGA) with its differential thermogravimetric (DTG) studies. The microanalytical and spectroscopic assignments suggested that the associated of mononuclear complex with 1:3 molar ratio (M3+:ligand). Octahedral structure is speculated for this parent complex of the caproate anion, CH3(CH2)4COO ligand. The In2O3  NPs with nanoscale range within 10–20 nm was synthesized by a simple, low cost and eco-friendly method using indium(III) caproate complex. Indium oxide nanoparticles were formed after calcination of precursor in static air at 600°C for 3 hrs. The structural, grain size, morphological and decolorization efficiency of the synthesized NPs were characterized using the FT-IR, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM) analyses. It was worthy mentioned that the prepared In2O3  NPs showed a good photodegradation properties against CR and CV organic dyes during 90 min.
Słowa kluczowe
Rocznik
Strony
98--105
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
  • Imam Abdulrahman Bin Faisal University, Department of Chemistry, College of Education, P.O. Box 1982, Dammam, Saudi Arabia
  • Imam Abdulrahman Bin Faisal University, Department of Chemistry, College of Education, P.O. Box 1982, Dammam, Saudi Arabia
  • Imam Abdulrahman Bin Faisal University, Department of Chemistry, College of Education, P.O. Box 1982, Dammam, Saudi Arabia
Bibliografia
  • 1. Cisneros R.L. Espinoza A.G. & Litter M.I. (2002). Photodegradation of an azo dye of the textile industry. Chemosphere 48(4), 393–399. https://doi.org/10.1016/S0045-6535(02)00117-0.
  • 2. Lee Y.H. & Pavlostathis S.G. (2004). Decolorization and toxicity of reactive anthraquinone textile dyes under methanogenic conditions. Water Res. 38(7), 1838–1852. https://doi.org/10.1016/j.watres.2003.12.028.
  • 3. Xie S. Ren W. Qiao C. Tong K. Sun J. Zhang M. Liu X. & Zhang Z. (2018). An ele ctrochemi cal adsorp tion method for the reuse of w aste wate r-based drilling fluids. Natural Gas Industry B 5(5), 508–512. https://doi.org/10.1016/j.ngib.2018.03.005.
  • 4. Zhao Z. Geng C. Yang C. Cui F. & Liang Z. (2018). A novel flake-ball-like magnetic Fe3O4/γ-MnO2 meso-porous nano-composite: Adsorption of fluorinion and effect of water chemistry. Chemosphere 209, 173–181. https://doi.org/10.1016/j.chemosphere.2018.06.104.
  • 5. Radhakrishnan A. Rejani P. Khan J.S. & Beena B. (2016). Effect of annealing on the spectral and optical characteristics of nano ZnO: Evaluation of adsorption of toxic metal ions from industrial waste water. Ecotoxicology and Environmental Safety 133, 457–465. https://doi.org/10.1016/j.ecoenv.2016.08.001.
  • 6. Basheer Al Arsh. (2018). New generation nano-adsorbents for the removal of emerging contaminants in water. J. Molec. Liquids 261, 583–593.
  • 7. Mehrotra R.C. & Bohra R. (1983). Metal Carboxylates Academic Press London.
  • 8. Brusau E.V. Pedregosa J.C. Narda G.E. Ayala E.P. & Oliveira E.A. (2004). Vibrational and thermal study of hexaaquatris (malonato) dieuropium (III) dihydrate. J. Arg. Chem. Soc. 92(1/3), 43–52.
  • 9. Gushchina T.N. & Kotenko G.A. (1983). Koord. Khim. 12(3) 325.
  • 10. Brzyska W. & Paszkowska B. (1998). Studies on the Thermal Decomposition of Rare Earth Caproates. J. Thermal Anal. 51 561–566. https://doi.org/10.1007/BF03340193.
  • 11. Doyle A. Felcman J. Gambardella M. Verani C.N. & Tristao M.L.B. (2000). Anhydrous copper(II) hexanoate from cuprous and cupric oxides. The crystal and molecular structure of Cu2(O2CC5H11)4. Polyhedron 19(26/27) 2621–2627. https://doi.org/10.1016/S0277-5387(00)00568-4.
  • 12. Pietsch R. (1971). Untersuchungen über die extraktion von thorium blei und eisen (III) als verbindungen der capronsäure. Anal. Chim. Acta 53(2) 287–294. https://doi.org/10.1016/S0003-2670(01)82087-0.
  • 13. Kolomiets L.L. Lysenko O.V. & Pyatnitskii I.V. (1988). Photoelectric counter of disperse particles. Z. Anal. Khim. 43(10) 1773.
  • 14. Pyatnitskii I.V. Kolomeits L.L. Lysenko O.V. & Sobko M.G. (1990). Z. Anal. Khim. 45(1) 56.
  • 15. Kopacz S. Szantula J. & Pardela T.Z. (1989). Prikladoni Khim 62(11) 2535.
  • 16. Mazouchi M. Sarkar K. Purahmad M. Farid S. & Dutta M. (2018). Photoconduction mechanism of ultra-long indium oxide nanowires. Solid-State Electronics 148 58–62. https://doi.org/10.1016/j.sse.2018.07.003.
  • 17. Du X. & Man B. (2018). Effect of growth temperature on the structural and optoelectronic properties of epitaxial indium oxide films. J. Crystal Growth 499 18–23. https://doi.org/10.1016/j.jcrysgro.2018.07.033.
  • 18. Fuchs F. & Bechstedt F. (2008). Indium-oxide polymorphs from first principles Quasi particle electronic states. Phys. Rev. 77(4) 55107–55109. https://doi.org/10.1103/PhysRevB.77.155107.
  • 19. Li C. Zhang D. Han S. Liu X. Tang T. & Zhou C. (2003). Diameter-Controlled Growth of Single-Crystalline In2O3Nanowires and Their Electronic Properties. Adv Mater. 15(2), 143–146. https://doi.org/10.1002/adma.200390029.
  • 20. Falcony C. Kirtley J.R. Dimaria D.J. Ma T.P. & Chen T.C. (1985). Electroluminescence emission from indium oxide and indium-tin-oxide. J. Applied Phys. 58, 3556–3558. https://doi.org/10.1063/1.335730.
  • 21. Mane R.S. Pathan H.M. Lokhande C.D. & Han S.H. (2006). An effective use of nanocrystalline CdO thin films in dye-sensitized solar cells. Solar Energy 80(2), 185–190. https://doi.org/10.1016/j.solener.2005.08.013.
  • 22. Zhang D. Liu Z. Li C. Tang T. Liu X. Han S. Lei B. & Zhou C. (2004). Detection of NO2 down to ppb Levels Using Individual and Multiple In2O3 Nanowire Devices. Nano. Lett. 4(10) 1919–1924. https://doi.org/10.1021/nl0489283.
  • 23. Karazhanov S.Z. Ravindran P. Vajeeston P. Ulyashin A. Finstad T.G. & Fjellvag H. (2007). Phase stability electronic structure and optical properties of indium oxide polytypes. Phys. Rev. B 76 75129–75131. https://doi.org/10.1103/PhysRevB.76.075129.
  • 24. Lin S.E. & Wei W.C.J. (2008). Synthesis and Investigation of Submicrometer Spherical Indium Oxide Particles. J. Am. Ceram. Soc. 91(4) 1121–1128. https://doi.org/10.1111/j.1551-2916.2008.02266.x.
  • 25. Chu D.Y.P. Zeng D.J. & Xu J. (2007). Tuning the phase and morphology of In2O3 nanocrystals via simple solution routes. Nanotechnology. 18(43) 5605–5609.
  • 26. Rey J.F.Q. Plivelic T.S. Rocha R.A. Tadokoro S.K. Torriani I. & Muccillo E.N.S. (2005). Synthesis of In2O3nanoparticles by thermal decomposition of a citrate gel precursor. J. Nanopart. Res. 7(2) 203–208. https://doi.org/10.1007/s11051-004-7899-7.
  • 27. Geary W.J. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev. 7(1) 81–122. https://doi.org/10.1016/S0010-8545(00)80009-0.
  • 28. Deacon G.B. & Phillips R.J. (1980). Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord. Chem. Rev. 33 227–250. https://doi.org/10.1016/S0010-8545(00)80455-5.
  • 29. Alcock N.W. Culver J. & Roe S.M. (1992). The Effects of Cations and Anions on the Ionic of the development of organic substitution methods. J. Chem. Soc. Dalton Trans. 1447.
  • 30. Nakamoto K. (1997). Infrared and Raman Spectra of Inorganic and Coordination Compounds Wiley New York.
  • 31. Dunn D.D. & Hall R.H. (1975). Purines pyrimidines nucleosides and nucleotides: Physical constants and spectral properties in G.D. Fasman (Ed.) Handbook of Biochemistry and Molecular Biology 3rd ed. Nucleic Acids Vol. 1 CRC Press Cleveland Ohio pp. 65–215.
  • 32. Holm R.H. & Cotton F.A. (1958). Spectral Investigations of Metal Complexes of β-Diketones. I. Nuclear Magnetic Resonance and Ultraviolet Spectra of Acetylacetonates. J. Am. Chem. Soc. 80 5658. https://doi.org/10.1021/ja01554a020.
  • 33. Cotton F.A. & Wilkinson C.W. (1972). Advanced Inorganic Chemistry 3rd Ed Interscience Publisher New York.
  • 34. Refat M.S. El-Korashy S.A. Kumar D.N. & Ahmed A.S. (2008). FTIR magnetic 1H NMR spectral and thermal studies of some chelates of caproic acid: Inhibitory effect on different kinds of bacteria. Spectrochimica Acta Part A 70(1) 217–233. https://doi.org/10.1016/j.saa.2007.07.036.
  • 35. Coats A.W. & Redfern J.P. (1964). Kinetic Parameters from Thermogravimetric Data. Nature 201 68–69.
  • 36. Horowitz H.W. & Metzger G. (1963). A New Analysis of Thermogravimetric Traces. Anal. Chem. 35 1464–1468. https://doi.org/10.1021/ac60203a013
  • 37. Zsako J. (1968). Kinetic analysis of thermogravimetric data. J. Phy. Chem. 72(7) 2406–2411. https://doi.org/10.1021/j100853a022.
  • 38. Sharp J.H. & Wentworth S.A. (1969). Kinetic analysis of thermogravimetric data. Analyt. Chem. 41(14) 2060–2062. https://doi.org/10.1021/ac50159a046.
  • 39. Wendlandt W.W. (1974). Thermal Methods of Analysis John Wiley & Sons New York NY USA 2nd edition.
  • 40. Cullity B.D. (1978). Elements of X-Ray Diffraction Second Edition Addison-Wesley Publishing Company ch. 5.
  • 41. Nyquist R.A. & Kagel R.O. (1971). In: Infrared Spectra of Inorganic Compounds. Academic Press New York Vol. 4.
  • 42. Keller R.J. (1982). In: The Sigma Library of FTIR Spectra Sigma Chemical St. Louis Vol. 2.
  • 43. Mondal A. & Ram S. (2004). Reconstructive phase formation of ZrO2nanoparticles in a new orthorhombic crystal structure from an energized porous ZrO(OH)2·xH2O precursor. Ceramics International 30 239. https://doi.org/10.1016/S0272-8842(03)00095-6.
  • 44. Mott N.F. & Davis E.A. (1979). Electronic Processes in NonCrystalline Materials 2nd ed. Clarendon Press Oxford.
  • 45. Li C. Zhang D. Han S. Liu X. Tang T. Lei B. Liu Z. & Zhou C. (2003). Synthesis Electronic Properties and Applications of Indium Oxide Nanowires. Ann. N.Y. Acad. Sci. 1006 104–121. DOI: 10.1196/annals.1292.007.
  • 46. Sreenivas K. Rao T. & Mansingh A. (1985). Preparation and characterization of rf sputtered indium tin oxide films. J. Appl. Phys. 57 384–392. https://doi.org/10.1063/1.335481.
  • 47. Shigesato Y. Takaki S. & Haranoh T. (1992). Electrical and structural properties of low resistivity tin-doped indium oxide films. J. Appl. Phys. 71 3356–3364. https://doi.org/10.1063/1.350931.
  • 48. Rey J.F.Q. Plivelic T.S. Rocha R.A. Tadokoro S.K. Torriani I. & Muccillo E.N.S. (2005). Synthesis of In2O3nanoparticles by thermal decomposition of a citrate gel precursor. J. Nanoparticle Res. 7 203–208. https://doi.org/10.1007/s11051-004-7899-7.
  • 49. Ghanizadeh G.H. & Asgari G. (2009). Removal of Methylene Blue Dye from Synthetic Wastewater with Bone Char. Iran. J. Health Environ. 2 104–113. http://ijhe.tums.ac.ir/article-1-159-en.html.
  • 50. Farzin N. deh Hossein N. Shahram N. Asif M. Inderjeet T. Shilpi A. & Kumar G.V. (2016). Removal of malachite green from aqueous solutions by cuprous iodide– cupric oxide nano-composite loaded on activated carbon as a new sorbent for solid phase extraction: Isotherm kinetics and thermodynamic studies. J. Mol. Liq. 213 360–368. https://doi.org/10.1016/j.molliq.2015.07.058.
  • 51. Tang C.W. (2013). Study of Photocatalytic Degradation of Methyl Orange on Different Morphologies of ZnO Catalysts. Modern Research in Catalysis 2 19–24. http://dx.doi.org/10.4236/mrc.2013.22003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-961136aa-e7bf-4d26-9b52-8c4be0367d64
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.