PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sensitivity study on seat belt system key factors in terms of disabled driver behavior during frontal crash

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Each year, many cars (in Poland approximately three hundred) are adopted for disabled driver, to enable them to drive the car independently. The purpose of the paper is to assess the key factors which significantly influence the disabled driver behavior during a frontal crash and have the biggest impact on the safety factors. Methods: To achieve the purpose of the paper, the finite element method was used. The authors built the numerical model which includes operation of all safety systems operating in the real car (sensors, seat belts, airbag). Using this method, the authors simulated few different cases of the frontal crash of the car driven by a person with disabilities. Results: The obtained results were: displacements, velocities and accelerations of the head, pelvis and shoulders. Additional results were also loads in the neck. Based on the achieved results, several biomechanical parameters and criterions (HIC, Nij) were computed. Conclusions: Therefore, during car adaptation for disabled drivers using a four-point seat belts system, this parameter can be optimized to reduce forces acting on the driver chest. Higher values of the force limit reduce Nij and increase HIC and contact forces between the dummy and seatbelts. Therefore, during designing of the pyrotechnic four-point seat belts system, the pretensioner characteristics should be analyzed taking all the driver’s biomechanical parameters into account.
Rocznik
Strony
169--180
Opis fizyczny
Bibliogr. 19 poz., rys., wykr.
Twórcy
  • Military University of Technology, Faculty of Mechanical Engineering, Warsaw, Poland
  • Military University of Technology, Faculty of Mechanical Engineering, Warsaw, Poland
Bibliografia
  • [1] BARANOWSKI P., BOGUSZ P., DAMAZIAK K., MALACHOWSKI J., MAZURKIEWICZ L., MUSZYŃSKI A., Analiza wpływu zastosowanego elementu energochłonnego mającego bezpośredni kontakt z głową dziecka w aspekcie minimalizacji obciążeń dynamicznych, Logistyka, 2015, 2355–2363.
  • [2] BARANOWSKI P., DAMAZIAK K., MALACHOWSKI J., MAZURKIEWICZ L., MUSZYŃSKI A., A child seat numerical model validation in the static and dynamic work conditions, Archives of Civil and Mechanical Engineering, 2015, 15, 361–375.
  • [3] BARANOWSKI P., DAMAZIAK K., MAZURKIEWICZ L., MALACHOWSKI J., MUSZYŃSKI A., VANGI D., Analysis of mechanics of side impact test defined in UN/ECE Regulation 129, Traffic Injury Prevention, 2018, 19, 256–263.
  • [4] BETLEJ M., RADZIEJOWSKA A., Bezpieczeństwo i ekologia, Autobusy, 2016, 6, 68–74.
  • [5] BOSE D., CRANDALL J.R., UNTAROIU C.D., MASLEN E.H., Influence of pre-collision occupant parameters on injury outcome in a frontal collision, Accident Analysis and Prevention, 2010, 42, 1398–1407.
  • [6] CHATEAUROUX E., WANG X., Car egress analysis of younger and older drivers for motion simulation, Applied Ergonomics, 2010.
  • [7] DAVIDSE R.J., Older Drivers and Adas, IATSS Res., 2006, 30, 6–20.
  • [8] HAZAY M., DÉNES D., BOJTÁR I., The Probability of Traumatic Brain Injuries Based on Tissue-level Reliability Analysis, Acta of Bioengineering and Biomechanics, 2019, 21, 141–152.
  • [9] HERRIOTTS P., Identification of vehicle design requirements for older drivers, Applied Ergonomics, 2005, 36, 255–262, DOI:10.1016/j.apergo.2005.01.002.
  • [10] Humanetic Innovative Solutions Inc., Hybrid III 50th Dummy Dyna Model – technical report, 2013.
  • [11] JOSZKO K., WOLAŃSKI W., BURKACKI M., SUCHOŃ S., ZIELONKA K., MUSZYŃSKI A. et al., Biomechanical analysis of injuries of rally driver with head supporting device, Acta Bioeng. Biomech., 2016, 18, 159–169.
  • [12] LAWTON C., COOK S., MAY A., CLEMO K., BROWN S., Postural support strategies of disabled drivers and the effectiveness of postural support aids, Applied Ergonomics, 2008, 39, 47–55.
  • [13] LS-Dyna keyword user’s manual, LSTC.
  • [14] LUO X., DU W., ZHANG J., Safety benefits of motorized seat belt as a component in ADAS in front-end collisions, 17th IEEE Int. Conf. Intell. Transp. Syst., ITSC, 2014, 661–666.
  • [15] MARZOUGUI D., SAMAHA R.R., CUI C.-D., OPIELA K., Extended Validation of the Finite Element Model for the 2010 Toyota Yaris Passenger Sedan, National Crash Analysis Center, 2012.
  • [16] MAZURKIEWICZ L., BARANOWSKI P., KARIMI H.R., DAMAZIAK K., MALACHOWSKI J., MUSZYŃSKI A. et al., Improved child-resistant system for better side impact protection, The International Journal of Advanced Manufacturing Technology, 2018, 97, 3925–3935.
  • [17] MONACELLI E., DUPIN F., DUMAS C., WAGSTAFF P., A review of the current situation and some future developments to aid disabled and senior drivers in France, IRBM, 2009, 30, 234–239.
  • [18] PTAK M., RATAJCZAK M., KWIATKOWSKI A., SAWICKI M., WILHELM J., FERNANDES FAO et al., Investigation of biomechanics of skull structures damages caused by dynamic loads, Acta of Bioeng. Biomech., 2018, 20, 143–150.
  • [19] XIAO S., YANG J., CRANDALL J.R., Investigation of chestinjury mechanism caused by different seatbelt loads in frontal impact. Acta Bioeng. Biomech., 2017, 19, 53–62.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-960e2e8e-0b48-4467-b8f0-1e5b724f3244
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.