Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Random noise suppression is an important technique to improve the efficiency and accuracy of seismic data processing. Physical denoising methods such as f − x deconvolution and K-SVD have been widely adopted by the industry, while popular learning-based methods such as neural networks have emerged as good alternatives. In this paper, we propose a multi-scale residual dense network (MSRDN) for random noise suppression of seismic raw data. First, the network consists of a shallow feature extraction module, multiple residual blocks and multiple up-sampling modules. They are used for feature extraction, noise learning and size restoration. Second, each residual block is composed of multiple dense blocks. They are designed to alleviate network degradation. Third, dense blocks are tightly connected by multi-scale convolutional layers. They can enhance the regularization effect of the network. The experimental results show that MSRDN is more accurate and stable than previous algorithms.
Wydawca
Czasopismo
Rocznik
Tom
Strony
637--647
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
- School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
autor
- School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
autor
- School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
- Institute for Artifcial Intelligence, Southwest Petroleum University, Chengdu 610500, China
autor
- School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
Bibliografia
- 1. Adegun AA, Viriri S (2020) FCN-based densenet framework for automated detection and classification of skin lesions in dermoscopy images. IEEE Access 8:150377–150396
- 2. Aharon M, Elad M, Bruckstein A (2006) K-svd: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Sig Process 54(11):4311–4322. https://doi.org/10.1109/TSP.2006.881199
- 3. Bonar David, Sacchi Mauricio (2012) Denoising seismic data using the nonlocal means algorithm. Geophysics 77:5
- 4. Canales LL (1984) Random noise reduction, In: SEG technical program expanded abstracts 1984. Society of Exploration Geophysicists, pp 525–527
- 5. Chen Y, Zhou Y, Chen W, Zu S, Huang W, Zhang D (2017) Empirical low-rank approximation for seismic noise attenuation. IEEE Trans Geosci Remote Sens 55(8):4696–4711
- 6. Elsner JB, Tsonis AA (1996) Singular spectrum analysis. Springer, Boston, MA
- 7. Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang G, Cai J, Chen T (2018) Recent advances in convolutional neural networks. Pattern Recogn 77(C):354–377
- 8. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
- 9. Hornbostel S (1991) Spatial prediction filtering in the t−x and f−x domains. Geophysics 56(12):2019–2026
- 10. Huang G, Liu Z, Maaten LVD, Weinberger KQ (2017a) Densely connected convolutional networks. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), pp 2261–2269
- 11. Huang W, Wang R, Chen X, Chen Y (2017) Double least-squares projections method for signal estimation. IEEE Trans Geosci Remote Sens 55(7):4111–4129
- 12. Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. Neural Information Processing Systems 25
- 13. Li H, Yang W, Yong X (2018) Deep learning for ground-roll noise attenuation. SEG technical program expanded abstracts 2018. Society of Exploration Geophysicists, pp 1981–1985
- 14. Li J, Zhang Y, Qi R, Liu Q (2017) Wavelet-based higher order correlative stacking for seismic data denoising in the curvelet domain. IEEE J Sel Top Appl Earth Obs Remote Sens 10(8):3810–3820
- 15. Naghizadeh M, Sacchi M (2012) Multicomponent f-x seismic random noise attenuation via vector autoregressive operators. Geophysics 77:91
- 16. Oropeza V, Sacchi M (2011) Simultaneous seismic de-noising and reconstruction via multichannel singular spectrum analysis (MSSA). Geophysics 76:V25–V32
- 17. Shan H, Ma J, Yang H (2009) Comparisons of wavelets, contourlets and curvelets in seismic denoising. J Appl Geophys 69(2):103–115
- 18. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv e-prints arXiv:1409.1556
- 19. Starck JL, Candès E, Donoho D (2002) The curvelet transform for image denoising. IEEE Trans Image Process 11(6):670–684
- 20. Szegedy C, Ioffe S, Vanhoucke V, Alemi A (2016) Inception-v4, Inception-ResNet and the impact of residual connections on learning. AAAI conference on artificial intelligence
- 21. Tian C, Xu Y, Fei L, Wang J, Wen J, Luo N (2019) Enhanced CNN for image denoising. CAAI Trans Intell Technol 4(1):17–23
- 22. Wang H, Cao S, Jiang K, Wang H, Zhang Q (2019) Seismic data denoising for complex structure using bm3d and local similarity. J Appl Geophys 170:103759
- 23. Wang Y, Zhang J, Cao Y, Wang Z (2017) A deep CNN method for underwater image enhancement. In: 2017 IEEE international conference on image processing (ICIP), pp 1382–1386
- 24. Fang W, Li Z (2021) Random noise attenuation in seismic data based on dual residual networks. Chin J Eng Geophys 18(1):44–50
- 25. Yang L, Chen W, Liu W, Zha B, Zhu L (2020) Random noise attenuation based on residual convolutional neural network in seismic datasets. IEEE Access 8:30271–30286
- 26. Yu S, Ma J, Wang W (2019) Deep learning for denoising. Geophysics 84:1–107
- 27. Zhang H, Chen X, Yang H (2011) Optimistic wavelet basis selection in seismic signal noise elimination. Oil Geophys Prospect 5(1):70–75
- 28. Zhang Y, Tian Y, Kong Y, Zhong B, Fu Y (2018) Residual dense network for image super-resolution. In: 2018 IEEE/CVF conference on computer vision and pattern recognition, pp 2472–2481
- 29. Zhongyuan M, Shanqi Q (1974) F-k two-dimen-sional filtering for seismic records. Geophys Prospect Pet 13(1):76–89
- 30. Zhou Y, Shi C, Chen H, Xie J, Wu G, Chen Y (2017) Spike-like blending noise attenuation using structural low-rank decomposition. IEEE Geosci Remote Sens Lett 14(9):1633–1637
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-960af5bc-3bcf-49aa-88fb-8beaab4eaa6e