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Abstract

The problem considered in the paper is motivategroguction planning in a foundry equipped with fheace and casting line, which
provides a variety of castings in various gradesast iron/steel for a large number of customehe quantity of molten metal does not
exceed the capacity of the furnace, the load iaricular type of metal from which the products arade. The goal is to createthe order
ofthe melted metal loads to prevent delays in @ejivof goods to customers.This problem is generadysidered as a lot-sizing and
scheduling problem. The paper describes a mathesmhgirogramming model that formally defines theimj#ation problem and its

relaxed version that is based on the conceptionltfig-horizon planning.

Keywords:Application of information technology to the fougdndustry,Production planning, Scheduling

1. Introduction

In this paper we studied a scheduling problem imid-size
foundry that makes castings to clientsorder In tbése, the
production planning problem consists in determirtimglot size of
the items and the required alloys to be produceithgleach period
of the finite planning horizon that is subdividedo smaller periods
(work shifts). Decision maker must take into acdotwo main
criteria: timeliness of orders and maximization @foduction
capacity. Assuming that a production bottleneckhis melting
furnace, a mixed-integer programming (MIP) modeisuaually
proposed to solve the outlined above lot-sizing aodeduling
problem.

The aim of this paper is to explore whether Excel
commercial nonlinear solvers may be used succéssfwards
small and medium-sized foundries when planning seiteduling
decisions are taken.Section 2 provides a MIP méatefoundry
scheduling problem. In Section 3, the details obppsed
approaches are given. The computational experinagatdescribed
in Section 4, and the conclusions are drawn ini@eét

2. Lot-sizing and scheduling model

2.1. MIP lot-sizing model

The MIP model presented in this section is an esitenof
Araujo et al. lot sizing and scheduling model fartcmated
foundry [1].We use the following notation:

Indices

i=1,...] - produced itemsk=1,... K- produced alloys,

t=1,...,T- working daysn=1,... N-sub-periods,

Parameters

di- demand for itennin dayt; w;- weight of itemi,

ak =1, if itemi is produced from allok, otherwise 0,

st setup loss for allo; C -loadingcapacity of the furnace,
h~, h*- cost for delaying (-) and storing (+) productminitem]|,
s- setup penalty (cost) when alloy is change inftineace.
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Variables
li i - number of items delayed (-) and stored (+) at the end of
dayt,
z¥'= 1, if there is a setup (resulting from a changfedlloy k in
sub-periodh, otherwise 0,
v = 1, if alloyk is produced imin sub-period, otherwise 0,
Xin- Nnumber of items produced in sub-periaa

Production planning problem in a foundry is definad
follows:

T K
Minimize D > (h-lgz +h17)+> > (s(z)) (1)
i=1 t=1 k=1 n=1
subject to:
N .
=l DXl +l =d, i=1.0,t=1T @
n=1
|
> wx,al +stzy <Cyy, k=1..K,n=1..,N (3)
i=1
ZX>y -y*, k=1..,K,n=1.,N (4)
K
> yi=1 n=1..N )
k=1
e % 20, 15,10, % 00, Ig,15=0i=1..,1 (6)

The goal (1) is to find a plan that minimizes thensof the
costs of delayed production, storage costs ofHadsgoods and
the setup costsfor alloy changing in the furnace.

Equation (2) balancesinventories, delays and tHenwe of
production of each item in each day.Constraint (Buees that
the furnace capacity is not exceeded in a singid.l€onstraint
(4) sets variableX to 1, if there is a change in an alloy in the
subsequent periods, while constraint (5) ensuras anly one
alloy is produced in each sub-period.

The model itself can be seen as an extension cérghsed
lot-sizing and scheduling problem (GLSP) that idl wlescribed
in literature and for which standard MIP methodsually
achieveacceptable results [2,3]. However, since lttesizing
model for a foundry takes into account also theeowf alloys —
setup penalty is calculated as a part of the albedtinction (1)
and alloy changing loss is included in constraB)t it is much
harder to solve than the classic lot-sizing model.

2.2. Relaxed lot-sizing model

The model presented in the previous section, evetife
smallest problem considered later in the experimeand
containing 10 items, 2 different alloys and thenpiag horizon of
50 sub-periodin total, results in 830 optimizatizariables (210
binary and 630 integer). This is far too many Ex8elver can
handle (the limit for standard built-in MS ExcelSal is 200
variables). Thus we decided to apply a method amtd the fix
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and relax method proposed by Araujo et al. in TtHe main idea
behind this method is to compute the exact play o1l a single
day, while for remaining days only rough plan isedmined. This
is called rolling-horizon planning [4].

Araujo et al. [1] relaxed all variableg, andy,* for not fixed
sub-periods. Variableg, representing the number of items
produced in sub-period is of a float type instead of integer,
while y is now integer value reflecting in how many subiqes
a given alloy will be produced.

Thus constraint (2) is valid only for the fixed d@y and for
other days it looks as follows:

| N
> wx,af <Cyf, k=1..K,t=1..Tt#t,

i=1 n=1

(@)

Analogously constraint (5) for the days other tlae fixed
one is extended to the following formula:

K
D yE=N, t=1..Tt#t,

k=1

(8)

Instead of one model computed once, the modelditing-
horizon is computed times. Each time values of fixed variables
computed for one day are included as constantsarfdllowing
days.

In order to make the model possible for solvingMy Excel
Solver we decided to farther reduce the size ofrtieglel. For
non-fixed days we replaced variablgswith x;, what means that
the production equation (2) for the relaxed daysisnced as:

P T o T PAEs N Y £ R 1 £ )

This allows for the reduction of variables to oA§0 integer
variables (100 for the fixed dayand 40 for the rieing days).
Variabley, represents the alloy grade produced in a given sub
period (only for the fixed day). Constraint (8) b not used,
and only total capacity of furnace is checked If@r telaxed days:

Y wx, +st <C, k=LK t=1..T (10)

i=1

This allows for farther reduction of binary variablfrom 130
to only 10, giving the total number of 150 variable

3. Solution methods

Experiments performed by the authors [5] for large
instancesof lot-sizing and scheduling problem iatlid that such
problems arehard to solve and it is worth to amggnputational
intelligence methods like genetic algorithms. Ilnistipaper we
want to examine whether Excel Solver can be usedsfoall
instances of the problem and what is the impactpmblem
relaxation on the final result.
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3.1. Excd Solver

Excel Solver is provided by Frontline Systems. Tima also
sales an extended version of the solver, whitibleto solve larger
problems. For non-linear problem, like qifrscan handle 500
variables and 250 constraints (compare, gh)ilethe version built-in
MS Excel application is limited to 200 variablesli100 constraints.
We decided to use Frontline Solver Pro, as we fabatit perform:
better than standard Excel Solver even for the sameunt f
variables and constraints. This solver is contislyoupdated, whilr
the built-in MS Excel versiochanges only with a new version
application (usually once every three years).

Regarding the solver limitation for ndinear problems we wel
able to ompute only the smallest example with 10 items
2 different alloys. The problem with 50 items ar@ aloys woulc
require using 710 variables, what exceeds the limit

The main fragment of a spreadsheet that calcufatsduction
plan in a foundry is giwn in Fig.1. First table contains input d:
while the second one contains a detailed plan rier day (with 1(
subperiods) and rough plan for the remaining da-5).

& B [ 3 E F 3 A T [3 LM [ N0
1 |Lot-sizing and sr:'hedlllmg
2 |Input data
3 |Fumace capacity [ke]
4 |Setup penalty
5 |Setup lost foralloy L and 1 °

3 5
7 Tovent Demand per day

2|
8 Casti tity] Atloy | [kg] 1 2 3 4
a 1 2 5
10 [C E) 5
11 C 4
12 C -10
13 € 7
14 €6 9
15 C7 -2
16 C8 T
17 €8 -10 T
18 C10 10 6 0 4 9
19
20 Produced alloy and
21 7 9 I 3 4 5
22
28] 1
24 2
25 CL 3 2 1 9 28
% |C2 p5) 5 X 5 | 2%
27 |5 14 5 1 8 | 52
28 Cc4 9 1 3 47 3
23 Cs 21
30 |c6 3 "
31 CcT 4 8 4 45
32 |cs o [ 9 2 1 50
2 ce o T 1 El u 1 1 12 16 s 4s
34 [C10

Fig. 1. Fragment of apseadsheet that calculates productlon

3.2. CPLEX solver

We wrote the model in optimization programming langL
(OPL)that was laterrum IBM CPLEX Optimization Studio 12.¢
The basic model in OPL languagslgmwn in Fig. -

minimize

sum(i in ir, t in tr) (hm[i]*im[i][t]+hp[i]*ip[i][t])
+ sum(k in kr, t in tr, n in nr) sp*z[k][t][n];
subject to

{

forall(i in ir) im[i][@]==

forall(i in ir) ip[i][@]==0;

forall(k in kr,t in tr, n in nr) y[k][t][@]==

forall(i in ir,t in tr) ip[i][t-1]-im[i][t-1]+ sum(n in nr)
x[i][t][n]-ip[i][t]+im[i][t] == d[i][t];

forall(k in kr, t in tr, n in nr) sum(i in ir)
wlil*x[i][t][n]*a[i][k]+st[k]*z[k][t][n]<=C*y[k][t][n];

forall(k in kr, t in tr, n in nr) sum(i in ir)

forall(k in kr, t in tr,n in nr)

z[k][t][n]>=y[k][t][n]-y[k][t][n-1];
forall(t in tr, n in nr) sum(k in kr) y[k][t][n]==1;};

Fig. 2. Basic OPL modédbr foundry production plannir
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Arrayshm, hprepresent costh™ and h;*, while arraysim andip

represents variabldg andl;", respectively. Variablex, y andz

are indexed by both day) (and itssub-periods r{). Sub-period
number that is used in the model 2.1 can be caknlas:t*N+n.

3.3. CPLEX solver with relaxation

For the largest problem considered in the experm@PLEX
was not able to provide optimal solution for thedeidrhe soluon -
even after 10 minutes - wam averac50-70% distant from the
theoretical lower bound, so we decided to experiméth the fixed
and relaxed approactescribed in section 2.The objective function
remains the same (howewhis time it is calculated ifl steps).The
constraints in the rolling horizon version of thedal written in OPL
language are shown in Fig. 3.

subject to

{

forall(i in ir) im[i][0]==0;

forall(i in ir) ip[i][@]==0;

forall(k in kr, t in tr) y[k][t][0]==

forall(i in ir, t in fixed_periods, n in nr) xr[i][t][n]==

forall(i in ir, t in relaxed_periods, n in nr) x[i][t][n]==

forall(k in kr, t in relaxed_periods, n in nr) y[k][t][n]==0;

forall(k in kr, t in fixed_periods) yr[k][t]==

forall(i in ir,t in tr) ip[i][t-21]-im[i][t- 1]+ sum(n in nr)
(X[l][t][n] + xr[i][t][n])-ip[i][t]+im[i][t] == d[i][t];

forall(k in kr, t in fixed_periods, n in nr) sum(l in ir)
wlil*x[i][t][n]*a[i][k]+st[k]*z[k][t][n]<=*C*y[k][t][n];

forall(k in kr,t in relaxed_periods) sum(i in ir, n in nr)
wlil*xr[i][t][n]*alloy[i][k]<=C*yr[k][t];

forall(k in kr, t in fixed_periods, n in nr)
z[k][t][n]>=y[k][t][n]-y[k][t][n-1];

forall(t in fixed_periods, n in nr) sum(k in kr)
y[k][t][n] ==

forall(t in relaxed_periods) sum(k in kr) yr[k][t] == N;};

Fig. 3. Constraints in rollinggorizon model for foundr
production plannin

Arrays xr and yr represent relaxed variablex, and yX,
respectively.Fixed_periodsare changed from 1,...,1, to 1,..
andrelaxed_periodsare changed from 2,...to empty range in
the last iteration.

In order to awmate the computing procewe wrote C#
application that run the rolling horizon modelgatevely day afte
day, taking the values of the fixed variables frtime previous
solution. We set the tinlenit for each model to 3 inutes, however
usually the partial solution was provided withinminute or almos
immediately so the final solution after 5 days was usuallyi@ecd
within 6-7 minutes.

4. Computational experiments

4.1. Test problems

Computational experiments were conducted on this lofighe
test problems proposed in][The characteristic of these problem
covered in Table 1.Thesalues for demand a weight were
determined using uniform distribution within a gim&ange
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Table 1.

Test problems characteristics
Parameter

number of itemsl§, number of alloysK)
number of daysT)

Value
(10,2); (50,10); (100,20)
5

number of subperiod$\j 10
demand d;) [10, 60]
weight of item ) [1, 30]
setup loss for alloyst) [5, 10]

setup penaltyg) 5

We extended the test problems by introducing cdsts
delayed items and costs for storing the items preduhat do not
match the demand. Those parameters were randoméyajed as
follows:

h™=6 *randomy; + 3 (12)

h*"=w * 0.02 + 0.05 (12)
Ten instances of the problem for each size werergéed.
The basis furnace capaci€/was generated using the following
formula corresponding to the total sum of the wesighf ordered

items:

(13)

4.2. Results of the experiments

Computational experiments were conducted for thizes of
planning problems: with 10 items made from 2 d#faralloys,
50 items made from 10 alloys, and with 100 itemd 20 alloys.
For each problem size ten instances were comphtaxtl Solver
was able to handle only the smallest problem, diggrthe limit
of optimization variables. The computational timaswsimilar for
all the examined methods and ranged from 6 to &itefm

The average results achieved for all 10 instantmzgawith
the standard deviations are presented in Table 2.

Table 2.
Results of the experiments for examined methods
Problem Excel CPLEX CPLEX-RH
(10.2) average 151.85 54.54 68.03
' std.dev. 66.82 1351 23.87
average _ 6,794.15 6,254.24
(50,10) std.dev. 1,292.54 1,021.46
average _ 34,695.10 29,038.12
(100.20) 4. dev. 2,339.14  1.961.16

The experiments for 10 items and 2 alloys cleahigvs that
the solution provided by Excel cannot compete whi# solution
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achieved by the advanced MIP solver that is comialgrc

available from IBM. Nevertheless, our goal was tendestrate

that when model is appropriately relaxed Excel barused as a
basic and cheap tool for optimization of product@anning in a

foundry. However, when more variables need to e in the

model or more accurate solution is desired advaMi€dsolvers

like CPLEX should be recommended.

For the larger instances of the problem fixed aax method
based on the rolling-horizon planning gave on ayeraetter
results than when the planning model was optimioedall the
periods at once. This is due to the fact that aglsimelaxed
problem can be solved optimally or close to optimdiile for the
non-relaxed problem the solver usually deliversiohs that can
be even 70% distant from the theoretical lower laoun

5. Conclusions

In this paper the mathematical programming is &opfior
foundry production planning. The model is based aomnwell-
known lot-sizing problem that was extended to hanthe
constraints regarding changes in alloy grade. Suahodel is
difficult to solve as it includes large amount @fcision variables
(few thousand for the problem of a medium size)e Thmber of
variables can be reduced by applying the conceptobihg-
horizon planning. In such approach variables arenprded
precisely only for one period (e.g. a day), whibe femaining
periods (days) variables are roughly computed @eoto satisfy
the constraints. Although such relaxed problem lsutes not
allow to find optimal solutionit can provide googpoximation
of optimal solution and within shorter computatibtime.
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