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Abstract. In this note, we obtain the expressions for multiplicative Zagreb indices and
coindices of derived graphs such as a line graph, subdivision graph, vertex-semitotal graph,
edge-semitotal graph, total graph and paraline graph.
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1. INTRODUCTION

In this paper, we are concerned with simple graphs without isolated vertices. Let G
be such a graph with vertex set V (G), |V (G)| = n, and edge set E(G), |E(G)| = m.
As usual, n is the order and m the size of G. The degree of a vertex w ∈ V (G) is the
number of vertices adjacent to w and is denoted by dG(w). A vertex w ∈ V (G) is said
to be pendant if dG(w) = 1. The degree of an edge e = uv in G, denoted by dG(e),
is defined by dG(e) = dG(u) + dG(v) − 2. We refer to [9] for unexplained terminology
and notation.

A graphical invariant is a number related to a graph, in other words, it is a fixed
number under graph automorphisms. In chemical graph theory, these invariants are
also called the topological indices. In 1984, Narumi and Katayama [11] considered the
product index as

NK(G) =
∏

u∈V (G)

dG(u)

for representing the carbon skeleton of a saturated hydrocarbon, and named it as
a simple topological index. Tomović and Gutman renamed this molecular structure
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descriptor as the Narumi-Katayama index [15]. In 2010, Todeshine et al. [13, 14] pro-
posed the multiplicative variants of ordinary Zagreb indices, which are defined as
follows:

∏
1
(G) =

∏

u∈V (G)

dG(u)2 = [NK(G)]2 and
∏

2
(G) =

∏

uv∈E(G)

dG(u)dG(v).

These two graph invariants are called first and second multiplicative Zagreb indices by
Gutman [6]. And recently, Eliasi et al. [5] introduced a further multiplicative version
of the first Zagreb index as

∏∗

1
(G) =

∏

uv∈E(G)

[dG(u) + dG(v)].

In [18] and [7] the authors called it a multiplicative sum Zagreb index and modified
first multiplicative Zagreb index respectively. The second multiplicative Zagreb index
for any graph G can also be written as [6]

∏
2
(G) =

∏

u∈V (G)

dG(u)dG(u).

Xu et al. [19] defined the first and second multiplicative Zagreb coindices, respec-
tively, as

∏
1
(G) =

∏

uv 6∈E(G)

[dG(u) + dG(v)] and
∏

2
(G) =

∏

uv 6∈E(G)

dG(u)dG(v).

The main properties of multiplicative Zagreb indices are summarized in [1, 4, 10, 12,
17,18,20].

We introduce the modified second multiplicative Zagreb index as
∏∗

2
(G) =

∏

uv∈E(G)

[dG(u) + dG(v)][dG(u)+dG(v)].

2. DERIVED GRAPHS

In recent papers [2,3,8], the authors obtained the expressions for Zagreb indices and
coindices of derived graphs. This motivates us to find expressions for

∏
1,
∏

2,
∏∗

1 and∏
2 of derived graphs.
Let G be a graph with vertex set V (G) and edge set E(G). We are concerned with

the following graphs derived from G ([8]):

– line graph L = L(G); V (L) = E(G) and the two vertices of L are adjacent if the
corresponding edges of G are incident with a common vertex;

– subdivision graph S = S(G); V (S) = V (G)∪E(G) and the vertex of S correspond-
ing to the edge uv of G is inserted in the edge uv of G;
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– vertex-semitotal graph T2 = T2(G); V (T2) = V (G) ∪ E(G) and E(T2) = E(S) ∪
E(G);

– edge-semitotal graph T1 = T1(G); V (T1) = V (G)∪E(G) and E(T1) = E(S)∪E(L);
– total graph T = T (G); V (T ) = V (G) ∪ E(G) and E(T ) = E(S) ∪ E(G) ∪ E(L);
– paraline graph PL = PL(G) is the line graph of the subdivision graph.

In Figure 1 self-explanatory examples of these derived graphs are depicted.
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Fig. 1. Various graphs derived from the graph G. The vertices of these derived graphs
(except the paraline graph P L), corresponding to the vertices of the parent graph G, are
indicated by circles. The vertices of these graphs corresponding to the edges of the parent

graph G are indicated by squares

In [19], Kexiang Xu et al. obtained the expressions for
∏

2(G) of any connected
graph G as

∏
2
(G) =

∏

u∈V (G)

dG(u)n−1−dG(u) and
∏

2
(G)
∏

2
(G) =

(∏
1
(G)
)n−1

2

which are not satisfied for a complete graph. The following lemmas give the correct
expressions for

∏
2(G).
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Lemma 2.1. For a connected graph G 6= Kn, we have
∏

2
(G) =

∏

u∈V (G)

dG(u)n−1−dG(u).

Lemma 2.2. For a connected graph G 6= Kn, we have

∏
2
(G)
∏

2
(G) =

(∏
1
(G)
)n−1

2

.

Next we present the values of multiplicative Zagreb indices and coindices for several
classes of graphs.

Example 2.3. Let Pn be the path with n vertices. The pendant vertices have degree 1
and other vertices have degree 2. Hence,

(i)
∏

1(Pn) = 4(n−2),
(ii)

∏
2(Pn) = 4(n−2),

(iii)
∏∗

1(Pn) = 9 · 4(n−3), n ≥ 3,
(iv)

∏
1(Pn) = 2 · 9(n−3) · 4(n−4)!, n ≥ 4,

(v)
∏

2(Pn) = 2(n−2)(n−3), n ≥ 3,
(vi)

∏∗
2(Pn) = 36 · 44(n−3), n ≥ 3.

Example 2.4. Consider the cycle Cn with n vertices. Since its every vertex is of
degree 2, then

(i)
∏

1(Cn) = 4n,
(ii)

∏
2(Cn) = 4n,

(iii)
∏∗

1(Cn) = 4n,
(iv)

∏
1(Cn) = 4

n(n−3)
2 , n ≥ 4,

(v)
∏

2(Cn) = 4
n(n−3)

2 , n ≥ 4,
(vi)

∏∗
2(Cn) = 44n.

Example 2.5. Let Kn be the complete graph on n vertices. All vertices of Kn have
degree n − 1 and so

(i)
∏

1(Kn) = (n − 1)2n, n ≥ 2,
(ii)

∏
2(Kn) = (n − 1)n(n−1), n ≥ 2,

(iii)
∏∗

1(Kn) = [2(n − 1)]
n(n−1)

2 , n ≥ 2,
(iv)

∏
1(Kn) = 0,

(v)
∏

2(Kn) = 0,
(vi)

∏∗
2(Kn) = [2(n − 1)]n(n−1)2 , n ≥ 2.

Example 2.6. Let Kr,s be the complete bipartite graph. Then Kr,s has r+s vertices
and rs edges. Hence,
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(i)
∏

1(Kr,s) = r2s · s2r,
(ii)

∏
2(Kr,s) = [rs]rs,

(iii)
∏∗

1(Kr,s) = [r + s]rs,
(iv)

∏
1(Kr,s) = [2r]

s(s−1)
2 · [2s]

r(r−1)
2 , r 6= 1 and s 6= 1,

(v)
∏

2(Kr,s) = rs(s−1) · sr(r−1), r 6= 1 and s 6= 1,
(vi)

∏∗
2(Kr,s) = [r + s]rs(r+s).

Example 2.7. Let Wn be the wheel on n vertices. Its central vertex has degree n − 1
and its other vertices have degree 3. This implies
(i)
∏

1(Wn) = (n − 1)2 · 32(n−1),
(ii)

∏
2(Wn) = [3(n − 1)](n−1) · 32(n−1),

(iii)
∏∗

1(Wn) = [n + 2](n−1) · 6(n−1),
(iv)

∏
1(Wn) = 6

(n−1)(n−4)
2 , n ≥ 5,

(v)
∏

2(Wn) = 9
(n−1)(n−4)

2 , n ≥ 5,
(vi)

∏∗
2(Wn) = 66(n−1) · [n + 2](n−1)(n+2).

3. RESULTS

Theorem 3.1. Let G be a graph of order n and size m. Then
∏

1
(S) = 4m

∏
1
(G).

Proof. Note that S has n + m vertices.
∏

1
(S) =

∏

u∈V (S)

dS(u)2 =
∏

u∈V (S)∩V (G)

dS(u)2
∏

e∈V (S)∩E(G)

dS(e)2.

Note that for u ∈ V (S) ∩ V (G), dS(u) = dG(u) and for e ∈ V (S) ∩ E(G), dS(e) = 2.
∏

1
(S) =

∏

u∈V (G)

dG(u)2
∏

e∈E(G)

22 = 4m
∏

1
(G).

Theorem 3.2. Let G be a graph of order n and size m. Then
∏

2
(S) = 4m

∏
2
(G).

Proof. Since S has n + m vertices, then
∏

2
(S) =

∏

u∈V (S)

dS(u)dS(u) =
∏

u∈V (S)∩V (G)

dS(u)dS(u)
∏

e∈V (S)∩E(G)

dS(e)dS(e).

Since for u ∈ V (S) ∩ V (G), dS(u) = dG(u) and for e ∈ V (S) ∩ E(G), dS(e) = 2.
∏

2
(S) =

∏

u∈V (G)

dG(u)dG(u)
∏

e∈E(G)

22 = 4m
∏

2
(G).
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Theorem 3.3. Let G be a graph of order n and size m. Then
∏∗

1
(S) =

∏

u∈V (G)

[2 + dG(u)]dG(u).

Proof. Since S has n + m vertices, then we have
∏∗

1
(S) =

∏

uv∈E(S)

[dS(u) + dS(e)].

Since for u ∈ V (S) ∩ V (G), dS(u) = dG(u) and for e ∈ V (S) ∩ E(G), dS(e) = 2.
∏∗

1
(S) =

∏

u∈V (G)

[2 + dG(u)]dG(u).

Corollary 3.4. Let G be a connected graph of order n and size m. Then

∏
2
(S) = 2m2+nm−3m[

∏
1(G)] n+m−1

2∏
2(G) .

Proof. From Lemma 2.2 we have

∏
2
(S) = [

∏
1(S)] n+m−1

2∏
2(S) .

From Theorems 3.1 and 3.2 we get the result.

Theorem 3.5. Let G be a graph of order n and size m. Then
∏

1
(T2) = 4n+m

∏
1
(G).

Proof. Note that T2 has n + m vertices.
∏

1
(T2) =

∏

u∈V (T2)

dT2(u)2 =
∏

u∈V (T2)∩V (G)

dT2(u)2
∏

e∈V (T2)∩E(G)

dT2(e)2.

Note that for u ∈ V (T2)∩V (G), dT2(u) = 2dG(u) and for e ∈ V (T2)∩E(G), dT2(e) = 2.
∏

1
(T2) =

∏

u∈V (G)

[2dG(u)]2
∏

e∈E(G)

22 = 4n+m
∏

1
(G).

Theorem 3.6. Let G be a graph of order n and size m. Then
∏

2
(T2) = 64m

∏
1
(G)

∏
2
(G).
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Proof. Since T2 has n + m vertices and 3m edges, then we have
∏

2
(T2) =

∏

uv∈E(T2)

dT2(u)dT2(v)

=
∏

uv∈E(T2)∩E(G)

dT2(u)dT2(v)
∏

ue∈E(T2)\E(G)

dT2(u)dT2(e).

Since for u ∈ V (T2) ∩ V (G), dT2(u) = 2dG(u) and for e ∈ V (T2) ∩ E(G), dT2(e) = 2.

∏
2
(T2) =

∏

uv∈E(G)

2dG(u)2dG(v)
∏

ue∈E(T2)\E(G)

(2)2dG(u)

= 4m
∏

uv∈E(G)

dG(u)dG(v)42m
∏

u∈V (G)

dG(u)2

= 64m
∏

1
(G)

∏
2
(G).

Theorem 3.7. Let G be a graph of order n and size m. Then

∏∗

1
(T2) = 8m

∏∗

1
(G)

∏

u∈V (G)

[1 + dG(u)]dG(u).

Proof. Since T2 has n + m vertices and 3m edges, then we have

∏∗

1
(T2) =

∏

uv∈E(T2)

[dT2(u) + dT2(v)]

=
∏

uv∈E(T2)∩E(G)

[dT2(u) + dT2(v)]
∏

ue∈E(T2)\E(G)

[dT2(u) + dT2(e)].

Since for u ∈ V (T2) ∩ V (G), dT2(u) = 2dG(u) and for e ∈ V (T2) ∩ E(G), dT2(e) = 2.

∏∗

1
(T2) =

∏

uv∈E(G)

[2dG(u) + 2dG(v)]
∏

ue∈E(T2)\E(G)

[2 + 2dG(u)]

= 2m
∏

uv∈E(G)

[dG(u) + dG(v)]22m
∏

u∈V (G)

[1 + dG(u)]dG(u)

= 8m
∏∗

1
(G)

∏

u∈V (G)

[1 + dG(u)]dG(u).

Corollary 3.8. Let G be a connected graph of order n and size m. Then

∏
2
(T2) = 2(n+m)2−n−7m[

∏
1(G)] n+m−3

2∏
2(G) .
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Proof. From Lemma 2.2 we have

∏
2
(T2) = [

∏
1(T2)] n+m−1

2∏
2(T2) .

From Theorems 3.5 and 3.6 we get the result.

Theorem 3.9. Let G be a graph of order n and size m. Then

∏
1
(T1) =

∏
1
(G)
[∏∗

1
(G)
]2

.

Proof. Note that T1 has n + m vertices.
∏

1
(T1) =

∏

u∈V (T1)

dT1(u)2

=
∏

u∈V (T1)∩V (G)

dT1(u)2
∏

ei∈V (T1)∩E(G)

dT1(ei)2.

Note that for u ∈ V (T1)∩V (G), dT1(u) = dG(u) and for ei ∈ V (T1)∩E(G), dT1(ei) =
dG(ui) + dG(vi).

∏
1
(T1) =

∏

u∈V (G)

dG(u)2
∏

uivi∈E(G)

[dG(ui) + dG(vi)]2

=
∏

1
(G)
[∏∗

1
(G)
]2

.

Theorem 3.10. Let G be a graph of order n and size m. Then
∏

2
(T1) =

∏
2
(G)

∏∗

2
(G).

Proof. Since T1 has n + m vertices, then we have
∏

2
(T1) =

∏

u∈V (T1)

dT1(u)dT1 (u)

=
∏

u∈V (T1)∩V (G)

dT1(u)dT1 (u)
∏

ei∈V (T1)∩E(G)

[dT1(ei)][dT1 (ei)].

Since for u ∈ V (T1) ∩ V (G), dT1(u) = dG(u) and for ei ∈ V (T1) ∩ E(G), dT1(ei) =
dG(ui) + dG(vi).

∏
2
(T1) =

∏

u∈V (G)

dG(u)dG(u)
∏

uivi∈E(G)

[dG(ui) + dG(vi)][dG(ui)+dG(vi)]

=
∏

2
(G)

∏∗

2
(G).
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Corollary 3.11. Let G be a connected graph of order n and size m. Then

∏
2
(T1) = [

∏
1(G)] n+m−1

2 [
∏∗

1(G)]n+m−1
∏

2(G)
∏∗

2(G)
.

Proof. From Lemma 2.2 we have

∏
2
(T1) = [

∏
1(T1)] n+m−1

2∏
2(T1) .

From Theorems 3.9 and 3.10 we get the result.

In [16], an incorrect expression for
∏

1(T ) was established. The following theorem
gives the correct expression for

∏
1(T ).

Theorem 3.12. Let G be a graph of order n and size m. Then
∏

1
(T ) = 4n

∏
1
(G)
[∏∗

1
(G)
]2

.

Proof. Note that T has n + m vertices.
∏

1
(T ) =

∏

u∈V (T )

dT (u)2 =
∏

u∈V (T )∩V (G)

dT (u)2
∏

ei∈V (T )∩E(G)

dT (ei)2.

Note that for u ∈ V (T ) ∩ V (G), dT (u) = 2dG(u) and for ei ∈ V (T ) ∩ E(G), dT (ei) =
dG(ui) + dG(vi).
∏

1
(T ) =

∏

u∈V (G)

[2dG(u)]2
∏

uivi∈E(G)

[dG(ui) + dG(vi)]2 = 4n
∏

1
(G)
[∏∗

1
(G)
]2

.

Theorem 3.13. Let G be a graph of order n and size m. Then
∏

2
(T ) = 16m

∏∗

2
(G)
[∏

2
(G)
]2

.

Proof. Since T has n + m vertices, then we have
∏

2
(T ) =

∏

u∈V (T )

dT (u)dT (u) =
∏

u∈V (T )∩V (G)

dT (u)dT (u)
∏

ei∈V (T )∩E(G)

dT (ei)dT (ei).

Note that for u ∈ V (T ) ∩ V (G), dT (u) = 2dG(u) and for ei ∈ V (T ) ∩ E(G), dT (ei) =
dG(ui) + dG(vi).

∏
2
(T ) =

∏

u∈V (G)

[2dG(u)][2dG(u)]
∏

uivi∈E(G)

[dG(ui) + dG(vi)][dG(ui)+dG(vi)]

=
∏

u∈V (G)

2[2dG(u)][dG(u)]2dG(u)
∏∗

2
(G)

= 16m
∏∗

2
(G)
[∏

2
(G)
]2

.
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Corollary 3.14. Let G be a connected graph of order n and size m. Then

∏
2
(T ) = 2n(n+m−1)−4m[

∏
1(G)] n+m−1

2 [
∏∗

1(G)]n+m−1
∏∗

2(G)[
∏

2(G)]2
.

Proof. From Lemma 2.2 we have

∏
2
(T ) = [

∏
1(T )] n+m−1

2∏
2(T ) .

From Theorems 3.12 and 3.13 we get the result.

Theorem 3.15. Let G be a graph of order n and size m. Then
∏

1
(PL) =

[∏
2
(G)
]2

.

Proof. Note that paraline graph PL has 2m vertices, and dG(u) of its vertices have
the same degree as the vertex u of the graph G.

∏
1
(PL) =

∏

u∈V (P L)

dP L(u)2 =
∏

u∈V (G)

dG(u)[2dG(u)] =
[∏

2
(G)
]2

.

Theorem 3.16. Let G be a graph of order n and size m. Then
∏

2
(PL) =

∏

u∈V (G)

[dG(u)][dG(u)]2
.

Proof. Since PL has 2m vertices, then we have
∏

2
(PL) =

∏

uv∈E(P L)

dP L(u)dP L(v)

=
∏

2
(G)

∏
[dG(u)][dG(u)(dG(u)−1)] =

∏

u∈V (G)

[dG(u)][dG(u)]2
.

Theorem 3.17. Let G be a graph of order n and size m. Then
∏∗

1
(PL) =

∏∗

1
(G)

∏

u∈V (G)

[2dG(u)]
dG(u)(dG(u)−1)

2 .

Proof. Since PL has 2m vertices, then we have
∏∗

1
(PL) =

∏

uv∈E(P L)

[dP L(u) + dP L(v)] =
∏∗

1
(G)

∏

u∈V (G)

[2dG(u)]
dG(u)(dG(u)−1)

2 .

Corollary 3.18. Let G be a connected graph of order n and size m. Then
∏

2
(PL) = [

∏
2(G)]2m−1

∏
u∈V (G)

[dG(u)][dG(u)]2
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Proof. From Lemma 2.2 we have

∏
2
(PL) = [

∏
1(PL)] 2m−1

2∏
2(PL) .

From Theorems 3.15 and 3.16 we get the result.

One can easily obtain the expressions for multiplicative Zagreb indices and
coindices of line graph L of graph G by considering edge degrees of G.

Theorem 3.19. Let G be a graph of order n and size m. Then

(i)
∏

1(L) =
∏

e∈E(G)
dG(e)2,

(ii)
∏

2(L) =
∏

ei∼ej

dG(ei)dG(ej),

(iii)
∏∗

1(L) =
∏

ei∼ej

[dG(ei) + dG(ej)],

(iv)
∏

1(L) =
∏

ei≁ej

[dG(ei) + dG(ej)],

(v)
∏

2(L) =
∏

ei≁ej

dG(ei)dG(ej),

where ei ∼ ej (resp. ei ≁ ej) means that the edges ei and ej are adjacent (resp. not
adjacent) in G.

It remains a task for the future to find the expressions for
∏∗

1(T1) and
∏∗

1(T ).

In [19], the total multiplicative sum Zagreb index
T∏

(G) of a graph G is defined as

T∏
(G) =

∏

u,v∈V (G)

[dG(u) + dG(v)].

Lemma 3.20 ([19]). For a connected graph G, we have
∏∗

1(G)
∏

1(G) =
T∏

(G).

By Lemma 3.20, one can find the expression for
∏

1 of derived graphs. But obtain-

ing the expression for
T∏

of derived graphs is a difficult task.
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