PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Searching of new, cheap, air- and thermally stable hole transporting materials for perovskite solar cells

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, two thermal- and air-stable, hole transporting materials (HTM) in perovskite solar cells are analyzed. Those obtained and investigated materials were two polyazomethines: the first one with three thiophene rings and 3,3’-dimethoxybenzidine moieties (S9) and the second one with three thiophene rings and fluorene moieties (S7). Furthermore, presented polyazomethines were characterized by Fourier transform infrared spectroscopy (FTIR), UV–vis spectroscopy, atomic force microscopy (AFM) and thermogravimetric analysis (TGA) experiments. Both polyazomethines (S7 and S9) possessed good thermal stability with a 5% weight loss at 406 and 377°C, respectively. The conductivity of S7 was two orders of magnitude higher than for S9 polymer (2.7 × 10⁻⁸ S/cm, and 2.6 × 10⁻¹⁰ S/cm, respectively). Moreover, polyazomethine S9 exhibited 31 nm bathochromic shift of the absorption band maximum compared toS7. Obtained perovskite was investigated by UV–vis and XRD. Electrical parameters of perovskite solar cells (PSC) were investigated at Standard Test Conditions (STC). It was found that both polyazomethines protect perovskite which is confirmed by ageing test where Voc did not decrease significantly for solar cells with HTM in contrast to solar cell without hole conductor, where Voc decrease was substantial. The best photoconversion efficiency (PCE = 6.9%), among two investigated in this work polyazomethines, was obtained for device with the following architectures FTO/TiO₂/TiO₂ + perovskite/S7/Au. Stability test proved the procreative effects of polyazomethines on perovskite absorber.
Słowa kluczowe
Rocznik
Strony
274--284
Opis fizyczny
Bibliogr. 39 poz., il., rys., tab.
Twórcy
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30-059 Krakow, Poland
autor
  • Military Institute of Engineer Technology, ul. Obornicka 136, 50-961 Wroclaw, Poland
  • iwan@witi.wroc.pl
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30-059 Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30-059 Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30-059 Krakow, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30-059 Krakow, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30-059 Krakow, Poland
  • Electrotechnical Institute, Division of Electrotechnology and Materials Science, ul. M. Sklodowskiej-Curie 55/61, 50-369 Wroclaw, Poland
autor
  • Electrotechnical Institute, Division of Electrotechnology and Materials Science, ul. M. Sklodowskiej-Curie 55/61, 50-369 Wroclaw, Poland
autor
  • Electrotechnical Institute, Division of Electrotechnology and Materials Science, ul. M. Sklodowskiej-Curie 55/61, 50-369 Wroclaw, Poland
Bibliografia
  • [1] G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energ Environ. Sci. 7 (2014) 982.
  • [2] L. Zheng, D. Zhang, Y. Ma, Z. Lu, Z. Chen, S. Wang, L. Xiao, Q. Gonga, Morphology control of the perovskite films for efficient solar cells, Dalton Trans. 44 (2015) 10582–10593.
  • [3] A. Hagfeldtt, M. Gratzel, Light-induced redox reactions in nanocrystalline systems contents, Chem. Rev. 95 (1995) 49–68.
  • [4] W. Nie, H. Tsai, R. Asadpour, J.Ch. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.L. Wang, A.D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science 347 (2015) 522–525.
  • [5] J.H. Heo, H.J. Han, D. Kim, T.A. Ahn, S.H. Im, Hysteresis-less inverted CH3NH3PbI3 plan perovskite hybrid solar cells with 18.1 % power conversion efficiency, Energy Environ. Sci. 8 (2015) 1602.
  • [6] J.A. Christians, P.A. Herrera, P.V. Kamat, Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air, J. Am. Chem. Soc. 137 (2015) 1530–1538.
  • [7] G.E. Eperon, V.M. Burlakov, A. Goriely, H.J. Snaith, Neutral color semitransparent microstructured perovskite solar cells, ACS Nano 8 (2014) 591–598.
  • [8] J. Liu, S. Pathak, T. Stergiopoulos, T. Leijtens, K. Wojciechowski, S. Schuman, N. Kausch-Busies, H.J. Snaith, Employing PEDOT as the p-type charge collection layer in regular organic-inorganic perovskite solar cells, J. Phys. Chem Lett. 6 (2016) 1666–1673.
  • [9] A. Gheno, S. Vedraine, B. Ratier, J. Bouclé, π-Conjugated materials as the hole-transporting layer in perovskite solar cells, Metals 6 (2016) 21.
  • [10] Ch Huang, W. Fu, Ch.-Z. Li, Z. Zhang, W. Qiu, M. Shi, P. Heremans, A.K.-Y. Jen, H. Chen, Dopant-free hole-transporting material with a C3 h symmetrical truxene core for highly efficient perovskite solar cells, J. Am. Chem. Soc. 138 (2016) 2528–2531.
  • [11] M. Lv, J. Zhu, Y. Huang, Y. Li, Z. Shao, Y. Xu, S. Dai, Colloidal CuInS2 quantum dots as inorganic hole-transporting material in perovskite solar cells, ACS Appl. Mater. Interfaces 7 (2015) 17482–17488.
  • [12] D.H. Sin, H. Ko, S.B. Jo, M. Kim, G.Y. Bae, K. Cho, Decoupling charge transfer and transport at polymeric hole transport layer in perovskite solar cells, ACS Appl. Mater. Interfaces 8 (2016) 6546–6553.
  • [13] Ch. Tao, S. Neutzner, L. Colella, 17.6% stabilized efficiency in low-temperature processed panar perovskite solar cells, Energy Environ. Sci. 8 (2015) 2365–2370.
  • [14] S.D. Sung, M.S. Kang, I.T. Choi, H.M. Kim, H. Kim, M. Hong, H.K. Kim, W.I. Lee, 14.8% perovskite solar cells employing carbazole derivatives as hole transporting materials, Chem. Commun. 50 (2014) 14161–14163.
  • [15] M.L. Petrus, T. Bein, T.J. Dingeman, P. Docampo, A low cost azomethine-based hole transporting material for perovskite photovoltaics, J. Mater. Chem. A 3 (2015) 12159–12162.
  • [16] Q. Wu, C. Xue, Y. Li, P. Zhou, W. Liu, J. Zhu, S. Dai, Ch. Zhu, S. Yang, Kesterite Cu2ZnSnS4 as a low-cost inorganic hole-transporting material for high-efficiency perovskite solar cells, ACS Appl. Mater. Interfaces 7 (2015) 28466–28473.
  • [17] X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D.B. Mitzi, M. Green, The current status and future prospects of kesterite solar cells: a brief review, Prog. Photovoltaics 24 (2016) 879–898.
  • [18] Q. Wu, C. Xue, Y. Li, P. Zhou, W. Liu, J. Zhu, S. Dai, C. Zhu, S. Yang, Kesterite Cu2ZnSnS4 as a low-cost inorganic hole-transporting material for high-efficiency perovskite solar cells, ACS Appl. Mater. Interfaces 7 (2015) 28466–28473.
  • [19] A. Iwan, D. Sek, Processible polyazomethines and polyketanils: from aerospace to light emitting diodes and other advanced applications, Progr. Polym. Sci. 33 (2008) 289–345.
  • [20] A. Iwan, D. Sek, Polymers with triphenylamine units: photonic and electroactive materials, Prog. Polym. Sci. 36 (2011) 1277–1325.
  • [21] A.W. Jeevadason, K.K. Murugavel, M.A. Neelakantan, Review on Schiff bases and their metal complexes as organic photovoltaic materials, Renew. Sustain. Energy Rev. 36 (2014) 220–227.
  • [22] M. Palewicz, A. Iwan, M. Sibiński, A. Sikora, B. Mazurek, Organic photovoltaic devices based on polyazomethine and fullerene, Energy Procedia 3 (2011) 84–91.
  • [23] G.D. Sharma, S.G. Sandogaker, M.S. Roy, Electrical and photoelectrical properties of poly(phenyl azomethine furane) thin films devices, Thin Solid Films 278 (1996) 129–134.
  • [24] A. Iwan, M. Palewicz, A. Chuchmała, L. Gorecki, B. A.Sikora, G. Mazurek, Pasciak Opto(electrical) properties of new aromatic polyazomethines with fluorene moieties in the main chain for polymeric photovoltaic devices, Synth. Met. 162 (2012) 143–153.
  • [25] A. Iwan, B. Boharewicz, I. Tazbir, M. Malinowski, M. Filapek, T. Kłąb, B. Luszczynska, I. Glowacki, K.P. Korona, M. Kaminska, J. Wojtkiewicz, M. Lewandowska, A. Hreniak, New environmentally friendly polyazomethines with thiophene rings for polymer solar cells, Sol. Energy 117 (2015) 246–259.
  • [26] A. Iwan, E. Schab-Balcerzak, K.P. Korona, S. Grankowska, M. Kamińska, Investigation of optical and electrical properties of new aromatic polyazomethine with thiophene and cardo moieties towards application in organic solar cells, Synth. Met. 185–186 (17–24) (2013).
  • [27] A. Iwan, B. Boharewicz, K. Parafiniuk, I. Tazbir, L. Gorecki, A. Sikora, M. Filapek, E. Schab-Balcerzak, New air-stable aromatic polyazomethines with triphenylamine or phenylenevinylene moieties towards photovoltaic application, Synth. Met. 195 (2014) 341–349.
  • [28] A. Iwan, M. Palewicz, A. Chuchmała, A. Sikora, L. Gorecki, D. Sek, Opto(electrical) properties of triphenylamine based polyazomethine and its blend with [6, 6]-phenyl C61 butyric acid methyl ester, High Perform. Polym. 25 (2013) 832–842.
  • [29] A. Bolduc, S. Barik, M.R. Lenze, K. Meerholz, W.G. Skene, Polythiophenoazomethines-alternate photoactive materials for organic photovoltaics, J. Mater. Chem. A 2 (2014) 15620–15626.
  • [30] A. Iwan, B. Boharewicz, I. Tazbir, M. Filapek, Enhanced power conversion efficiency in bulk heterojunction solar cell based on new polyazomethine with vinylene moieties and [6, 6]-phenyl C61 butyric acid methyl ester by adding 10-camphorsulfonic acid, Electrochim. Acta 159 (2015) 81–92.
  • [31] J.C. Hindson, B. Ulgut, R.H. Friend, N.C. Greenham, B. Norder, A. Kotlewski, T.J. Dingemans, All-aromatic liquid crystal triphenylamine-based poly(azomethine)s as hole transport materials for opto-electronic applications, J. Mater. Chem. 20 (2010) 937–944.
  • [32] A. Iwan, B. Boharewicz, I. Tazbir, A. Sikora, M. Malińnski, Ł. Chrobak, W. Madej, Laser beam induced current technique of polymer solar cells based on new poly(azomethine) or poly(3-hexylthiophene), Chem. Sci. Rev. Lett. 4 (2015) 597–608.
  • [33] K.P. Korona, T. Korona, D. Rutkowska-Zbik, S. Grankowska-Ciechanowicz, A. Iwan, M. Kamińska, Polyazomethine as a component of solar cells − theoretical and optical study, J. Phys. Chem. Solids 86 (2015) 186–193.
  • [34] A. Iwan, An overview of LC polyazomethines with aliphatic-aromatic moieties: thermal, optical, electrical and photovoltaic properties, Renew. Sustain. Energy Rev. 52 (2015) 65–79.
  • [35] A. Iwan, B. Boharewicz, I. Tazbir, M. Filapek, K.P. Korona, P. Wróbel, T. Stefaniuk, A. Ciesielski, J. Wojtkiewicz, A.A. Wronkowska, A. Wronkowski, B. Zboromirska-Wnukiewicz, S. Grankowska-Ciechanowicz, M. Kaminska, T. Szoplik, How do 10-camphorsulfonic acid, silver or aluminum nanoparticles influence optical, electrochemical, electrochromic and photovoltaic properties of air and thermally stable triphenylamine-based polyazomethine with carbazole moieties? Electrochim. Acta 185 (2015) 198–210.
  • [36] A. Iwan, M. Palewicz, I. Tazbir, B. Boharewicz, R. Pietruszka, M. Filapek, J. Wojtkiewicz, B. S. Witkowski, F. Granek, M. Godlewski, Influence of ZnO:Al, MoO3 and PEDOT:PSS on efficiency in standard and inverted polymer solar cells based on polyazomethine and poly(3-hexylthiophene), Electrochim. Acta 191 (2016) 784–794.
  • [37] S. Grankowska Ciechanowicz, K.P. Korona, A. Wolos, A. Drabinska, A. Iwan, I. Tazbir, J. Wojtkiewicz, M. Kaminska, Towards better efficiency of air-stable polyazomethine-based organic solar cells using time-resolved photoluminescence and light-induced electron spin resonance as verification methods, J. Phys. Chem. Part C 120 (2016) 11415–11425.
  • [38] S. Constantinos, M. Christos, K. Mercouri, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilites and near-infrared photoluminescent properties, Inorg. Chem. 52 (2013) 9019–9038.
  • [39] J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, Ch.-S. Lim, J.A. Chang, Y.H. Lee, H.-J. Kim, A. Sarkar, Md. K. Nazeeruddin, M. Grätzel, S.I. Seok, Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, Nat. Photonics 7 (2013) 486–491.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-960711a0-12df-42be-a19b-4de59dfe55a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.