PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chezy’s Resistance Coefficient in a Round-cornered Rectangle Channel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The determination of resistance coefficients, such as Chezy’s or Manning’s coefficients, requires a great deal of sensible thought in order to express these coefficients better and more extensively in free-surface channels and aqueducts. This can be achieved if the expression of the resistance coefficient is well stated and takes into account the maximum number of parameters for governing flows in channels. However, in most practical cases, if these coefficients are not expressed by implicit models, they are generally taken as constant and arbitrary. To this end and in a rational manner, the dimensioning and design of channels requires the expression of the resistance coefficient in an easily and explicit form by adopting numerous flow parameters, namely the roughness of the walls, the aspect ratio, the slope of the channels and essentially the viscosity of the liquid. To achieve this aim, the Chezy’s resistance coefficient C is identified using the rough model method (RMM), which gives the discharge under uniform flow conditions appropriate to a round-cornered rectangle channel.
Rocznik
Strony
89--103
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
autor
  • Civil Engineering Department, Laboratory for Management, Maintenance and Rehabilitation of Urban Equipment and Infrastructure (INFRARES), University Mohamed Cherif Messadia , Souk Ahras, 41000, Algeria
  • Research Laboratory in Subterranean and Surface Hydraulics (LARHYSS), University of Biskra, 07000, Algeria
Bibliografia
  • Achour B. (2007) Calcul des Conduites et Canaux par la MMR (Conduites et Canaux en Charge) [Calculation of pipes and canals using RMM (loaded pipes and canals)], Larhyss Edition Capitale, Biskra, Alg´erie, 610 p.
  • Achour B. (2015a) Chezy’s resistance coefficient in a circular conduit, Open Civ. Eng. J., 9, 187–195; DOI: https://dx.doi.org/10.2174/1874149501509010187.
  • Achour B. (2015b) Chezy’s resistance coefficient in a rectangular channel, J. Sci. Res. Rep., 7(5), 338–347; https:// doi.org /10.9734/JSRR/2015/18385.
  • Achour B. and Bedjaoui A. (2006) Exact solutions for normal depth problem: Discussion, J. Hydraul. Res., 44 (5), 715–717; https://doi.org/10.1080/00221686.2006.9521721.
  • Achour B. and Bedjaoui A. (2012) Turbulent pipe-flow Computation using the rough model method (RMM), J. Civil Eng. Sci, 1(1), 36–41.
  • Bazin H. (1897) Etude d’une nouvelle formule pour calculer le d´ebit des canaux d´ecouverts [Study of a new formula for calculating the flow of open channels]: M´emoire no. 41, Annales des ponts et chauss´ees, 14(7), 20–70.
  • Carlier M. (1972) Hydraulique G´en´erale et Appliqu´ee [General and Applied Hydraulics], Eyrolles, Paris, France, 565 p.
  • Chow V. T. (1973) Open Channel Hydraulics, McGraw Hill, New York (NY), USA, 680 p.
  • Ead S. A., Rajaratnam N., Katopodis C., Ade F. (2000) Turbulent open-channel flow in circular corrugated culverts, J. Hydraul.Eng., 126(10), 750–757; https://doi.org/10.1061/(ASCE)0733-9429(2000)126:10(750).
  • French R. H. (1986) Open Channel Hydraulics, McGraw Hill, New York (NY), USA, 705 p.
  • Ganguillet E. and Kutter W. R. (1869) An investigation to establish a new general formula for uniform flow of water in canals and rivers, Zeitschrift des Oesterreichischen Ingenieur und Architekten Vereines, 21(1), 6–25; 21(2–3), 46–59.
  • Giustolisi, O. (2004) Using genetic programming to determine Chezy resistance coefficient in corrugated channels, J. Hydroinf., 6(3), 157–173; https://doi.org/ 10.2166/hydro.2004.0013.
  • Loukam I., Achour B., Djeddou M. (2020) Chezy’s resistance coefficient in a horseshoe-shaped tunnel, Journal of Water Science, 32(4), 379–392; https://doi.org/10.7202/1069572ar.
  • Loukam I., Achour B., Djemili L. (2018) Chezy’s resistance coefficient in an egg-shaped conduit, Journal of Water and Land Development, 37 (IV–VI), 87–96, https://doi.org/ 10.2478/jwld-2018-0028.
  • Manning R. (1895) On the flow of water in open channels and pipes, Trans. Inst. Civil Eng. Ireland, 20, 161–209.
  • Marone V. (1970) Le resistenze al movimento uniforme in unalveo chiuso o aperto di sezione rettangolare e scabrezza definita [Resistance to uniform movement in a closed or open channel of rectangular cross-section and defined roughness], L’Energia Elettrica, 1, 1–20.
  • Naot D., Nezu I., Nakagawa H. (1996) Hydrodynamic behavior of partly vegetated open channels, J. Hydraul. Eng., 122(11), 625–633; https://doi.org/10.1061/(ASCE)0733-9429(1996)122:11(625).
  • Perry A. E., Schofield W. H., Joubert P. N. (1969) Rough wall turbulent boundary layers, J. Fluid Mech., 37(2), 383–413; https://doi.org/10.1017/S0022112069000619.
  • Powell R. W. (1950) Resistance to flow in rough channels, Trans. Am. Geophys. Union., 31(4), 575–582; https://doi.org/ 10.1029/TR031i004p00575.
  • Pyle R. and Novak P. (1981) Coefficient of friction in conduits with large roughness; J. Hydraul. Res., 19(2), 119–140; https://doi.org/ 10.1080/00221688109499522.
  • Streeter V. L. (1936) Frictional resistance in artificially roughened pipes, Trans. ASCE, 101(1), 681–704; https://doi.org/10.1061/TACEAT.0004790.
  • Swamee P. K. and Rathie P. N. (2004) Exact solutions for normal depth problem, J. Hydraul. Res., 42(5), 543–550; https://doi.org/10.1080/00221686.2004.9641223.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9601dce6-5ec9-483d-b984-35e4abf358af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.