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Abstract. The determination of resistance coefficients, such as Chezy’s or Manning’s coefficients, re-
quires a great deal of sensible thought in order to express these coefficients better and more extensively
in free-surface channels and aqueducts. This can be achieved if the expression of the resistance coeffi-
cient is well stated and takes into account the maximum number of parameters for governing flows in
channels. However, in most practical cases, if these coefficients are not expressed by implicit models,
they are generally taken as constant and arbitrary. To this end and in a rational manner, the dimensioning
and design of channels requires the expression of the resistance coefficient in an easily and explicit form
by adopting numerous flow parameters, namely the roughness of the walls, the aspect ratio, the slope
of the channels and essentially the viscosity of the liquid. To achieve this aim, the Chezy’s resistance
coefficient C is identified using the rough model method (RMM), which gives the discharge under
uniform flow conditions appropriate to a round-cornered rectangle channel.

Key words: Chezy’s resistance coefficient, RMM, round-cornered rectangle channel, uniform
flow

1. Introduction

In artificial canals or natural watercourses, and particularly under uniform conditions,
the notion of resistance during flow is expressed by a factor known as the “resistance
coefficient”. According to the experts, this coefficient is due to the roughness of the
walls or the friction produced by the layers of liquid between them. Since the first
appearance in 1775 of this coefficient C in Chezy’s general velocity formula (1) (Car-
lier 1972, Chow 1973, French 1986), many hydraulic engineers have contributed to
expressing this coefficient, each in their own way, depending on the nature of the
© 2024 Institute of Hydro-Engineering of the Polish Academy of Sciences. This is an open access article licensed under the
Creative Commons Attribution-NonCommercial-NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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channel walls, the shape of the cross-section, the longitudinal gradient, etc. In terms
of the coefficient C, the flow velocity V is given by

V = C
√

Rhi, (1)

where Rh is hydraulic radius and i is longitudinal slope. Among these expressions we
can cite the best known, such as Prony’s expression (Carlier 1972):

1
C2 =

0.000044
V

+ 0.000309, (2)

where V is pipe velocity.
Bazin (1897) proposed an expression for C as a function of hydraulic radius Rh

and a tabulated roughness γ:

C =
87

1 +
γ
√

Rh

. (3)

However, the formula (4) of Ganguillet and Kutter (1869) depends on more parame-
ters: Rh, the slope i and the roughness n, where its values are also shown in a table:

C =
23 +

0.00155
i

+
1
n

1 +
(
23 +

0.00155
i

)
n
√

Rh

. (4)

In relation to expression (4), in a simpler aspect, Kutter has proposed another formula
(Carlier 1972) which is easier to use than the one established by Ganguillet:

C =
100
√

Rh

b +
√

Rh
, (5)

where b is roughness of the inner wall of the channel.
Manning (1895) has proposed another formula for C as a function of Rh and n, the

latter parameter being the same as that seen in the Ganguillet-Kutter formula, hence

C =
1
n

R1/6
h . (6)

This expression is the most widely used in the calculation and design of channels and
pipes in free-surface flow.

From what has been presented, we can see that none of the expressions already
explained has taken account of the Reynolds number Re. However, in 1949 and in an
implicit form, Thijsse expressed the formula (7) (Carlier 1972), and Powell (1950)
expressed the formula (8). In these two formulas, the Chezy coefficient depends on
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the viscosity of the liquid interpreted by the Reynolds number Re, in addition to the
absolute roughness ε and the hydraulic radius Rh:

C = −18 log
[
ε

12Rh
+

C
3Re

]
, (7)

C = −42 log
[
ε

Rh
+

C
4Re

]
. (8)

Again, in order to have a general expression for the resistance coefficient C which
applies to all pipe shapes and which takes into account all the flow parameters,
Swamee and Rathie (2004) proposed the summary formula (9). However, it may have
the disadvantage of being implicit in the case where the linear dimension of the pipe
is not a given Achour (2015a, 2015b) Loukam et al(2018) and Loukam et al (2020).
Hence,

C = −2.457
√
g ln

[
ε

12Rh
+

0.221ν
Rh
√
giRh

]
, (9)

where ν is the kinematic viscosity and g is the acceleration of gravity.
Briefly, we can also cite other works carried out to determine the Chezy resistance

coefficient, namely that of Streeter (1936), Ead et al (2000), Pyle and Novak (1981),
Marone (1970), Perry et al (1969), Naot et al (1996) and Giustolisi (2004).

In summary, and following what has been presented, enormous efforts have been
made to better express the resistance coefficient. However, each of these works has
a drawback, either because it does not take into account all the parameters govern-
ing the flow, or because the established expression is implicit, requiring an iterative
calculation.

With this in mind and with the aim of avoiding these shortcomings, this work is
a contribution that consists of developing the expression for calculating the Chezy
coefficient C so that it is more manageable and easier to use. Based on the rough
model method (RMM) Achour and Bedjaoui (2006) for calculating pipes and chan-
nels, we establish a general relationship for the explicit form resistance coefficient,
taking into account all the hydraulic parameters and valid for all states of turbulent
flow in round-cornered rectangle channel (Figure 1). For this geometric shape, the
determination of the Chezy resistance coefficient by RMM can be carried out practi-
cally when the upper width of channel is a given or not in the problem, and can also
reveal to us singularities of variation of this coefficient, different from those of the
traditional geometric shape of the rectangular channel, where the walls are perfectly
straight.
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2. Methods

2.1. Round-cornered Rectangle

Round-cornered rectangle (Chow 1973) is a profile that is frequently used in channels
to discharge wastewater, rainwater and in the irrigation water systems. Compared to
the rectangular profile with straight corners, the rectangle profile with rounded corners
allows better evacuation of dirty water by preventing solids from settling at the bottom
of the channel.

The profile of the round-cornered rectangle is shown in Figure 1. It is a simple
rectangular profile with rounded corners at the bottom of the channel where the nor-
mal depth of the liquid is yn(yn > r). The hydraulic characteristics, specifically, the
wetted perimeter P, the wetted cross-section A and the hydraulic radius Rh, can be
obtained as functions of the aspect ratio η = yn/T and α = b/r.

Fig. 1. Round-cornered rectangle profile

A = T 2 × ϕ(η, α), (10)

P = T × σ(η, α), (11)

Rh = T ×
ϕ(η, α)
σ(η, α)

, (12)

where:

ϕ(η, α) =
(

1
2 + α

)2 (
π

2
− 2

)
+ η, (13)

σ(η, α) =
[
(π − 4)
(2 + α)

]
+ 1 + 2η. (14)
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2.2. Chezy’s Resistance Coefficient

2.2.1. General Expression

Taking into account the velocity expressed by Chezy, the discharge for the flow is
given by the following formula:

Q = CA
√

Rhi. (15)

The aim of this work is to express the resistance coefficient of equation (15) using
the RMM. The coefficient C, in addition to depending on the aspect ratio η, also
depends on other hydraulic parameters, such as the flow discharge Q, the longitudinal
slope i, the absolute roughness ε of the internal wall of the channel, and the kinematic
viscosity ν of the liquid. To do this, relationship (16) can be used to give the resistance
coefficient C, established in 2006 by Achour and Bedjaoui for turbulent flow for all
geometric profiles of pipes and channels:

Q = −4
√

2gA
√

Rhi log
[

ε

14.8Rh
+

10.04
Re

]
, (16)

where Re, the Reynolds number, is given by the formula (17)

Re = 32
√

2

√
giR3

h

ν
. (17)

By (15) and (16), C can be given as

C = −4
√

2g log
[

ε

14.8Rh
+

10.04
Re

]
. (18)

It would appear from the equation (18) that C depends on ε, Rh, and Re, which
moreover to equation (17) depends on hydraulic radius Rh, the slope i, and the kine-
matic viscosity ν. Equation (12) gives the hydraulic radius Rh as a function of the
aspect ratio η, the top width T and α. In dimensionless terms, Equation (18) becomes

C
√
g
= −4

√
2 log

[
ε

14.8Rh
+

10.04
Re

]
. (19)

By equations (12) and (17), we find that

Re = 32
√

2
√
giT 3

ν

[
ϕ(η, α)
σ(η, α)

] 3
2

, (20)

where we write

Re = Re∗
[
ϕ(η, α)
σ(η, α)

] 3
2

, (21)
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with

Re∗ = 32
√

2
√
giT 3

ν
. (22)

According to equations (12) and (21), relation (19) can be rewritten as follows:

C
√
g
= −4

√
2 log


ε

T

14.8
ϕ(η, α)
σ(η, α)

+
10.04

Re∗
[
ϕ(η, α)
σ(η, α)

] 3
2

 . (23)

2.2.2. Calculation of Chezy’s Resistance Coefficient Using the Rough Model Method

If the top width T is a data in the relationship (23), the resistance coefficient can be
explicitly calculated. Otherwise, if T is unknown, equation (23) is no longer valid. For
this purpose, we can use the rough model method (RMM) to determine the resistance
coefficient C.

The rough model is mainly characterized by ε/Dh = 0.037 (Achour 2007) as the ar-
bitrarily assigned relative roughness value, where Dh is the hydraulic diameter. Thus,
the friction factor is f = 1/16, according to the Colebrook-White relationship for Re =
Re, tending to an infinitely large value. For Re tending to infinity, Colebrook-White’s
relationship leads to the Nikuradse formula as follows (Achour 2007):

f =

−2 log


ε

Dh

3.7



−2

. (24)

By introducing the value ε/Dh = 0.037, we have

f =
[
−2 log

(
0.037
3.7

)]−2

= 4−2 =
1
16
. (25)

For a coefficient of friction f = 1/16 defined by the reference rough model (Achour
2007), C can be written as

C =

√
8g
f
= 8

√
2g = constant. (26)

In RMM, the channel is distinct by the dimension T of the cross-section, the
discharge Q, a longitudinal slope i, liquid kinematic viscosity ν and a aspect ratio
η. Hence our model is governed by the following conditions: D , D; Q = Q; i = i;
η = η; and ν = ν.
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Using equations (10) and (12), equation (15) will become:

Q =
ϕ(η, α)3/2

σ(η, α)1/2

√
C2T 5i. (27)

We put

Q∗ =
ϕ(η, α)3/2

σ(η, α)1/2 , (28)

so that
Q∗ =

Q
√

C2T 5i
. (29)

In accordance with formula (29), the relative conductivity of the rough model is de-
fined by

Q∗ =
Q√

C
2
T

5
i
. (30)

By applying formula (26), equation (30) becomes

Q∗ =
Q√

128gT
5
i
. (31)

By equalisation of (28) and (31) we get

Q√
128gT

5
i
=
ϕ(η, α)3/2

σ(η, α)1/2 .

As a result, we obtain:

T = 0.379
[
σ (η, α)

]0.2 [
ϕ (η, α)

]−0.6
[

Q
√
gi

]0.4

. (32)

The dimension T of the rough model is explicitly calculated by equation (32) if the
parameters η, Q, i and α are known.

Further, using equation (20), the Reynolds number characterizing the flow in the
rough model is:

Re = 32
√

2

√
giT

3

ν

[
ϕ(η, α)
σ(η, α)

] 3
2

, (33)

or

Re = Re
∗

[
ϕ(η, α)
σ(η, α)

] 3
2

, (34)

and

Re
∗
= 32

√
2

√
giT

3

ν
. (35)
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According to the RMM (Achour and Bedjaoui 2006), Chezy’s coefficient C is
given as follows.

C =
C
ψ5/2 , (36)

where ψ is a dimensionless parameter defined by the following expression (Achour
and Bedjaoui 2006, 2012):

ψ = 1.35

− log


ε

Rh

19
+

8.5
Re



− 2

5

. (37)

By equations (12) and (34), relationship (37) becomes:

ψ = 1.35

− log


ε

T

19
ϕ(η, α)
σ(η, α)

+
8.5

Re∗
[
ϕ(η, α)
σ(η, α)

] 3
2



− 2

5

. (38)

From (36), (26) and (38) we have:

C = −5.343
√
g log


ε

T

19
ϕ(η, α)
σ(η, α)

+
8.5

Re∗
[
ϕ(η, α)
σ(η, α)

] 3
2

 . (39)

In dimensionless form, equation (39) can be rewritten as follows:

C
√
g
= −5.343 log


ε

T

19
ϕ(η, α)
σ(η, α)

+
8.5

Re∗
[
ϕ(η, α)
σ(η, α)

] 3
2

 . (40)

3. Results and Discussion

Using the expression (23), we have produced Figures 2, 3 and 4 which show the vari-
ation curves of the Chezy’s coefficient C as a function of the aspect ratio η in the
channel, where α = 0.5, α = 3 and α = 18. The curves were plotted for tow rough-
ness values (ε/T = 0; ε/T = 0.05) by assigning to the Reynolds number Re∗ several
values ranging from 104 to 108.

For all curves, the maximum value of η is set to 1, because even if values of η
above 1 are assigned, the increase in the coefficient of C is negligible and not crucial.
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In Figures 2, 3, 4, the variation of C/√g, as a function of the aspect ratio η, is directly
proportional, C/√g increases rapidly below η = 0.4, and above this value the increase
becomes slow. It can be deduced that when η reaches the value of 0.4 in the channel,
the rate of increase of the resistance coefficient is approximately 87% of the total rate
of increase between the minimum and maximum values. The curves tend to converge
even as the Reynolds number increases in the case of high roughness (ε/T = 0.05).
C/√g has much higher values in all zero roughness curves than in the high roughness
curves (ε/T = 0.05), mainly because the Reynolds number Re∗ increases. In practice,
this is due to the effect of the Reynolds number, which becomes more dominant at
low roughness.

Fig. 2. Variation in C/√g as a function of aspect ratio η and α = 0.5 accord-
ing to relation (23) for fixed values of relative roughness and Reynolds number

Re∗: a) ε/T = 0.0, b) ε/T = 0.5
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Case of ε/T = 0.05

For low η, the minimum value of C/√g varies for the Reynolds number values vari-
ation in an interval of (0.34 to 3.44); (0.50 to 3.56); and (1.42 to 4.24), respectively,
for α equal to 0.5; 3 and 18, the Chezy coefficient has an increase with the increase
of α, this increase is about 0.8 from α = 0.5 to α = 18.

Fig. 3. Variation in C/√g as a function of aspect ratio η and α = 3 according
to relation (23) for fixed values of relative roughness and Reynolds number

Re∗: a) ε/T = 0.0, b) ε/T = 0.5

At very high η, C/√g varies for the variation of the Reynolds number values in
an interval of (10.40 to 11.40); (10.38 to 11.38); and (10.30 to 11.3), respectively, for
α equal to 0.5; 3 and 18. For a given Reynolds number , the reduction in C/√g is 0.1
from α = 0.5 to α = 18, giving a small average reduction of 1%.This indicates that
at very high η, the variation of Chezy’s coefficient is not significant to the variation
of α, and the maximum value of C/√g in the channel is obtained when α = 0.5 and
Re∗ = 108.
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Case of ε/T = 0.00

When η is very small, the C/√g takes minimum values for the variation of the pro-
posed Reynolds number values in an interval of (1.16 to 23.8); (1.34 to 23.96); and
(2.35 to 24.97) for α equal to 0.5; 3 and 18, respectively. However, the variation
of the maximum values of C/√g is steady, approximately from about 13 to 35 for
the given variation of the Reynolds number (Re∗ = 104 to Re∗ = 108), hence, for any
given Reynolds number, the reduction of C/√g from α = 0.5 to α = 18 is 0.13, giv-
ing a small reduction rate of 1%; this reduction of the maximum Chezy coefficient is
negligible for the variation of α.

Fig. 4. Variation in C/√g as a function of aspect ratio η and α = 18 according
to relation (23) for fixed values of relative roughness and Reynolds number

Re∗: a) ε/T = 0.0, b) ε/T = 0.5

When the roughness is zero, the C/√g reaches higher values than those in case
where the relative roughness is high; for very small η, the minimum values of C/√g
are about 2 to 7 times larger, as shown in Figure 5, where the curves obtained represent
the variation Rmin, the ratio between the minimum values of C/√g of zero roughness
and high roughness (ε/T = 0.05) for the previously proposed variation of Reynolds
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Fig. 5. Variation of the ratio Rmin as a function the Reynolds number Re∗ or
fixed values α = 0.5, α = 3 and α = 18

number, for the three cases of α = 0.5, α = 3 and α = 18. In fact, the curves show that
Rmin decreases at a remarkable rate of 10% to 50% with increasing value ofα. For very
high η; the ratio between the maximum values of C/√g of roughness equal to zero
and high roughness (ε/T = 0.05) for the variation of Reynolds number (Re∗ = 104 to
Re∗ = 108) varies approximately in the range of 1.25 to 3.13 which remains constant
regardless of the value of α.

Formula (23) can be used to calculate the coefficient C in a clear and explicit
way if these parameters are given: the Reynolds number Re∗, the relative roughness
ε/T , the aspect ratio η of the channel and the α. Though, without the top width T of
channel being known, using the rough model method, equation (40) can calculate C
by the following steps if Re∗, T , ε, η and α are given:

• First, the calculation of ϕ(η, α) and σ(η, α) is done using equations (13) and (14);
• Then, the calculation of the dimension T is done by relationship (32);
• Following, relationship (35) is used to determine the Reynolds number Re∗;
• Finally, C can be simply calculated by equation (40).

An application is shown below for calculating the resistance coefficient C using
the rough model method (RMM).

Application
Calculate the Chezy’s resistance coefficient in round-cornered rectangle channel us-
ing the rough model method (RMM): α = 3, Q = 0.6 m3s−1, i = 2 × 10−4, ε = 10−4

m, η = 0.8, ν = 10−6 m2s−1.
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Solution

• For η = 0.8 and α = 3, equations (13) and (14) can respectively give ϕ(η, α) and
σ(η, α):

ϕ(η, α) =
(

1
2 + α

)2 (
π

2
− 2

)
+ η =

(
1
5

)2 (
π

2
− 2

)
+ 0.8 = 0.7828,

σ(η, α) =
[
(π − 4)
(2 + α)

]
+ 1 + 2η =

[
(π − 4)

5

]
+ 1 + 2 × 0.8 = 2.428

• Calculation of T by relationship (32):

T = 0.379
[
σ (η, α)

]0.2 [
ϕ (η, α)

]−0.6
[

Q
√
gi

]0.4

= 0.379[2.428]0.2[0.7828]−0.6
[

0.6
√

9.81 × 2 × 10−4

]0.4

= 1.487 m

• Relationship (35) calculates the Reynolds number Re∗:

Re∗ = 32
√

2

√
giT

3

ν
= 32

√
2 ×

√
9.81 × 2 × 10−4 × (1.487)3

10−6 = 3634803

• Finally, C can be calculated using equation (40):

C = −5.343
√
g log


ε

T

19
ϕ(η, α)
σ(η, α)

+
8.5

Re∗
[
ϕ(η, α)
σ(η, α)

] 3
2

 ,

C = −5.343 ×
√

9.81 × log


0.0001
1.487

19 ×
0.7828
2.428

+
8.5

3 634 803 ×
[
0.7828
2.428

] 3
2

 ,
C = 77.38 m0.5s−1

4. Conclusion

The Chezy resistance coefficient in round-cornered rectangle channel is represented
by the two expressions (23) and (40). Given the profile of the channel, the geometric
characteristics were obtained as function of the aspect ratio η and the α, namely, the
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wetted cross sectional area A, the wetted perimeter P and the hydraulic radius Rh.
Therefore, the relationship (23) was developed to explicitly express the Chezy resis-
tance coefficient C as a function of the aspect ratio η, the α, the relative roughness
ε/T and the Reynolds number Re∗. However, the relationship (40) has been established
using the Rough Model Method (RMM) to express C as a function of Re∗, T , ε, η and
α without knowing the upper width T of the profile channel.

From equation (23), curves are drawn in Figures 2, 3 and 4 to show the variation
of Chezy resistance coefficient as a function of the aspect ratio η and the α by assign-
ing fixed values to the relative roughness ε/T = 0 and ε/T = 0.05, with the Reynolds
number increasing from 104 to 108. These curves also show that the Chezy resis-
tance coefficient increases rapidly below the value of 0.4 of the aspect ratio η with
the increase in the Reynolds number and increases slowly above this value. It can be
concluded that when η reaches the value of 0.4 in the channel, the rate of increase of
the resistance coefficient is approximately 87% of the total rate of increase between
the minimum and maximum values.

It’s also clear that when the roughness of the inner walls of the channel is zero,
the coefficient of resistance takes on higher values than when the roughness is high.
This can be explained by the dominant effect of the Reynolds number induced by the
viscosity ν of the liquid.

Finally, the variation of C/√g is very remarkable when η takes small values, it
increases with the increase of α. However, when η is high (η = 1), the variation of the
resistance coefficient with the variation of α is insignificant.
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