Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Environmental protection is one of the objectives of the implemented concept of sustainable development and circular economy. The construction industry and its products (building objects) have a large contribution in negative influences, therefore all actions limiting them are necessary. One way of doing this is to apply substitution to existing unfavourable solutions, both in terms of construction and materials as well as technology and organization. The aim of the article was to determine the key factors conditioning the use of substitution at each stage of the investment and construction cycle, leading to environmental protection. The research paid attention to the use of substitute recycled products. The defined factors were subjected to a SWOT analysis and then, using the DEMATEL method, cause-and-effect relationships were identified that determine development in the application of substitution in the environmental context of sustainable and closed-cycle construction. The analysis was carried out by using a summative, linear aggregation of the values of the position and relationship indicators.
Czasopismo
Rocznik
Tom
Strony
163--179
Opis fizyczny
Bibliogr. 48 poz., il., tab.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Civil Engineering and Resource Management, Department of Geomechanics, Civil Engineering and Geotechnics, Cracow, Poland
autor
- AGH University of Science and Technology, Faculty of Civil Engineering and Resource Management, Department of Geomechanics, Civil Engineering and Geotechnics, Cracow, Poland
autor
- AGH University of Science and Technology, Faculty of Civil Engineering and Resource Management, Department of Geomechanics, Civil Engineering and Geotechnics, Cracow, Poland
Bibliografia
- [1] M. Kokrzecka, “Międzynarodowe systemy certyfikacji LEED, BREEAM i DGNB. Wstępna analiza porównawcza poparta studium przypadku”, Journal of Civil Engineering, Environment and Architecture, vol. 32, no. 62 (2/15), pp. 311-322, 2015, DOI: 10.7862/rb.2015.60.
- [2] N. Kruis and M. Heun, “Analysis of the Performance of Earthship Housing in Various Global Climates”, in Proceedings of the ASME 2007, Energy Sustainability Conference, Long Beach, California, USA. ASME, 2009, pp. 431-440, DOI: 10.1115/ES2007-36030.
- [3] M. Chen Austin, K. Chung-Camaro and D. Mora, “Review of zero energy building concept-definition and developments in Latin America: A framework definition for application in Panama”, Energies, vol. 14, no. 18, art. no. 5647, 2021, DOI: 10.3390/en14185647.
- [4] Y. Zhang, et al., “A Survey of the Status and Challenges of Green Building Development in Various Countries”, Sustainability, vol. 11, no. 19, art. no. 5385, 2019, DOI: 10.3390/su11195385.
- [5] A. Tabrizikahou and P. Nowotarski, “Mitigating the Energy Consumption and the Carbon Emission in the Building Structures by Optimization‘of the Construction Processes”, Energies, vol. 14, art. no. 3287, 2021, DOI: 10.3390/en14113287.
- [6] ONZ, “Przekształcamy nasz świat: Agenda na rzecz zrównoważonego rozwoju 2030”, A/RES/70/1, 2015.
- [7] M. Gicala and A. Sobotka, “The analysis of construction and material solution, taking into account the requirements of sustainable development”, Scientific Review - Engineering and Environmental Sciences, vol. 26, no. 2, pp. 159-170, 2017, DOI: 10.22630/PNIKS.2017.26.2.14.
- [8] H. Bukowski and W. Fabrycka, Budownictwo w obiegu zamkniętym w praktyce. Warszawa: INNOWO, 2019. [Online]. Available: https://plgbc.org.pl/wp-content/uploads/2020/04/Budownictwo-w-obiegu-zamkni%C4%99tym-w-praktyce_raport.pdf. [Accessed: 22.05.2022].
- [9] R. Tylińska, Analiza SWOT instrumentem w planowaniu rozwoju. Warszawa: WSIP, 2005.
- [10] A. Skowroński, “Sustainable development as the perspective of further civilisation”, Problemy Ekorozwoju, vol. 1, no. 2, pp. 47-57, 2006.
- [11] P. Hąbek, “Zrównoważone wytwarzanie egzemplifikacja koncepcji CSR w obszarze produkcji”, Kwartalnik Naukowy, Organizacja i Zarządzanie : Kwartalnik Naukowy, no. 2, pp. 95-110, 2011.
- [12] A. Radziejowska and B. Sobotka, “Analysis of the Social Aspect of Smart Cities Development for the Example of Smart Sustainable Buildings”, Energies, vol. 14. no. 14, 2021, DOI: 10.3390/en14144330.
- [13] L. Runkiewicz, “Realizacja obiektów budowlanych zgodnie z zasadami zrównoważonego rozwoju”, Przegląd Budowlany, vol. 2, pp. 17-23, 2010, [Online]. Available: https://www.przegladbudowlany.pl/2010/02/2010-02-PB-17-23_Runkiewicz.pdf. [Accessed: 20.03.2022].
- [14] J. Kudełko and J. Kulczycka, “Prioritizing actions proposed in the Strategic Implementation Plan for the European Innovation Partnership on Raw Materials from the point of view of the Polish economy”, Zeszyty Naukowe IGSMiE PAN, no. 85, pp. 237-248, 2013.
- [15] M. Kuittinen and T. Hakkinen, “Reduced carbon footprints of buildings: new Finnish standards and assessments”, Buildings and Cities, vol. 1, no. 1, pp. 182-197, 2020, https://journal-buildingscities.org/articles/10.5334/bc.30.
- [16] A. Augustyn, “Cittaslow idea as a concept of sustainable development of small cities”, Sustainability, 2011, [Online]. Available: https://www.researchgate.net/publication/320555717. [Accessed: 20.05.2022].
- [17] E. Strzelecka, “Rewitalizacja miast w kontekście zrównoważonego rozwoju”, Budownictwo i Inżynieria Środowiska, vol. 2, no. 4, pp. 661-668, 2011, [Online]. Available: https://bibliotekanauki.pl/articles/403211. [Accessed: 20.03.2022] (in Polish).
- [18] A. Gałuszka, Z. Migaszewski, “Problems of Sustainable Use of Mineral Resources”, Problems of Sustainable Development, vol. 4, no. 1, pp. 123-130, 2009 (in Polish).
- [19] J. Adamczyk and D. Robert, “Recycling of Construction Waste in Terms of Sustainable Building”, Problems of Sustainable Development, vol. 5, no. 2, pp. 125-131, 2010 (in Polish).
- [20] P. Łukowski, et al., “Odporność chemiczna kompozytów polimerowych zawierających odpadowy pył perlitowy”, Przegląd Budowlany, vol. 85, no. 5, pp. 46-48, 2014 (in Polish).
- [21] J. Sagan and A. Sobotka, “Analysis of Factors Affecting the Circularity of Building Materials”, Materials, vol. 14, no. 23, art. no. 7296, 2021, DOI: 10.3390/ma14237296.
- [22] A.Kostrzanowska-Siedlarz and M. Drewniok, “Emisyjność głównych materiałów budowlanych - przeszłość i teraźniejszość”, Autostrady, vol. 10, pp. 60-63, 2019.
- [23] A. Połotnicka and E. Hewelke, “Corporate social responsibility as a tool of sustainable development on the example of Cemex Polska”, Scientific Review - Engineering and Environmental Sciences, no. 67, pp. 90-98, 2015 (in Polish).
- [24] M. Gawlicki and M. Glinicki, “Innowacyjne rozwiązania w zakresie redukcji CO2 w przemyśle materiałów budowlanych”, Prace Instytutu Ceramiki i Materiałów Budowlanych, vol. 5, no. 9, pp. 44-54, [Online]. Available: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BTB6-0004-0035. [Accessed:20.03.2022].
- [25] Ł. Wysmułek, “Wpływ zastosowania kruszywa z recyklingu na wymagany czas pielęgnacji betonu”, M.A. thesis, Politechnika Warszawska, 2022.
- [26] M. Skowroński, ”Rekonsumpcja materiałowa w architekturze”, PhD. thesis, Politechnika Wrocławska, Wydział Architektury, 2015.
- [27] N. Zając, “The influence substitution of aggregate with diatomaceous earth on selected properties of cement composites”, Uniwersytet Warszawski, 2019.
- [28] A. Sobotka, K. Linczowski, and A. Radziejowska, “Substitution of material solutions in the operating phase of a building”, Applied Sciences, vol. 11, no. 6, art. no. 2812, 2021, DOI: 10.3390/app11062812.
- [29] M. Kurpińska and A. Wcisło, “Assessment of the application of CEM III with exposed aggregate as an alternative to CEM I for road pavements”, Archives of Civil Engineering, vol. 68, no. 2, pp. 461-481, 2022, DOI: 10.24425/ace.2022.140653.
- [30] K.Walotek, J. Bzówka, and A. Ciołczyk, “Influence of addition of shredded rubber waste on deformability of binder-bound anthropogenic material mixtures”, Archives of Civil Engineering, vol. 67, no. 4, pp. 207-223, 2021, DOI: 10.24425/ace.2021.138495.
- [31] D. Anink, The handbook of sustainable building. An Environmental Preference Method for Choice Materials in Construction and Renovation. James & James (Science Publisher), 1996.
- [32] S. Kubba, Handbook of Green Building Design and Construction. Elsevier, 2012. [Online]. Available: https://www.sciencedirect.com/book/9780128104330/handbook-of-green-building-design-and-construction. [Accessed: 23.05.2022].
- [33] Y. Rogbeck, B. Svedberg, and N. Hakansson, “Use of alternative materials in civil engineering - Handbooks, experiences and future development in a Swedish context”, in 8th International Conference on Sustainable Management of Waste and Recycled Materials in Construction. ISCOWA, 2012. [Online]. Available: http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1365883&dswid=6512. [Access: 27.05.2022].
- [34] A. Duszyńska, “Możliwość redukcji emisji CO2 dzięki zastosowaniu geosyntetyków”, Inżynieria Morska i Geotechnika, vol. 5, pp. 756-760, 2015.
- [35] K. Smentoch, ”Geosystemy jako sposób ograniczenia emisji dwutlenku wegla”, Nowoczesne Budownictwo Inżynieryjne, no. 2, pp. 87-89, 2019.
- [36] „Rozporządzenie Ministra Klimatu z dnia 2 stycznia 2020 r. w sprawie katalogu odpadów”, Dziennik Ustaw Rzeczpospolitej, Dz.U. 2020 poz. 10.
- [37] J. Sagan and A. Sobotka, “Jak gospodarować odpadami na budowie?”, Builder, vol. 20, no. 10, pp. 84-86, 2016.
- [38] S. Delvoie, et al., “Construction and Demolition Wastes: specific conditions for recycling in North West Europa”, Cement, Wapno, Beton, vol. 25, pp. 3-20, 2020, DOI: 10.32047/CWB.2020.25.1.1.
- [39] C. Hoffmann, et al., “Recycled concrete and mixed rubble as aggregates: Influence of variations in composition on the concrete properties and their use as structural material”, Construction and Building Materials, vol. 35, pp. 701-709, 2012, DOI: 10.1016/j.conbuildmat.2011.10.007.
- [40] B. Zając and I. Gołębiowska, “Zagospodarowanie odpadów budowlanych”, Inżynieria i Aparatura Chemiczna, vol. 53, no. 6, pp. 393-395, 2014.
- [41] I. Demir and M. Orhan, “Reuse of waste bricks in the production line”, Building and Environment, vol. 38, no. 12, pp. 1451-1455, 2003, DOI: 10.1016/S0360-1323(03)00140-9.
- [42] A. Nordby, et al., “Criteria for salvageability: the reuse of bricks”, Building Research & Information, vol. 37, no. 1, pp. 55-67, 2009, DOI: 10.1080/09613210802476023.
- [43] A. Ashori and A. Nourbakhsh, “Characteristics of wood-fiber plastic composites made of recycled materials”, Waste Management, vol. 29, pp. 1291-1295, 2009.
- [44] M. Dytczak, et al., “Application potential of dematel method and its extensions for analysis of decision problems in civil engineering”, Budownictwo i Inzynieria Srodowiska, vol. 2, no. 3, pp. 235-240, 2011.
- [45] S. Sheng-Li, et al., “DEMATEL technique: a systematic review of the state-of-the-art literature on methodologies and applications”, Mathematical Problems in Engineering, vol. 2018, pp. 1-33, 2018, DOI: 10.1155/2018/3696457.
- [46] S. Jiunn-I, W. Hsin-Hung, and H. Kuan-Kai, “A DEMATEL method in identifying key success factors of hospital service quality”, Knowledge-Based Systems, vol. 23, no. 3, pp. 277-282, 2010, DOI: 10.1016/j.knosys.2010.01.013.
- [47] K. Kijewska, W. Torbacki, and S. Iwan, “Application of AHP and DEMATEL methods in choosing and analysing the measures for the distribution of goods in Szczecin region”, Sustainability, vol. 10, no. 7, pp. 1-26, 2018, DOI: 10.3390/su10072365.
- [48] P. Wiśniewski, “Ślad węglowy będą liczyć architekci. Obowiązek dla każdego budynku od 2030”, Muratorplus.pl. [Online] Available: https://www.muratorplus.pl/biznes/wiesci-z-rynku/slad-weglowy-co-to-aao8Wc-8de3-nRo7.html [Accessed: 31.5.2022].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9601656b-ad36-4cba-9dd8-fb4cd340a3fe