PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Applying Electrical Impedance Tomography Techniques for Detection of Decay Inside Trees

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Trees play a critical role in creating green spaces in public areas such as streets, parks, schools, offices. Over time, the trees often get pests and diseases, and then rotten trees can break. To care for and conserve the trees, it is necessary to determine the condition inside the trunk, especially the possibility of having a hollow or not. Wood decay, modifications of moisture and ion content, density due to biotic and abiotic stress agents of water extremity, salinity, and infection strongly change (di-) electrical properties of wood. Hence, we propose to use electrical impedance tomography to detect the change in electrical properties inside the trees that can link to wood decay. In electrical impedance tomography, an array of electrodes is attached around the tree trunk, and small alternating currents are injected via these electrodes, so the resulting voltages are measured. Processing the data, we can construct the spatial distribution of impedance (or resistivity) of the object. In this work, we will present the preliminary results of our group research. We will show theoretical forward modeling results, followed by laboratory experiments and real data application. The results illustrate that electrical impedance tomography can be useful to define several decay scenarios inside the trees.
Rocznik
Tom
Strony
31--40
Opis fizyczny
Bibliogr. 22 poz., rys., tab.,zdj.
Twórcy
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
Bibliografia
  • 1. http://www.vacne.org.vn/4-018-old-trees-across-the-country-have-been-recognized-asvietnamese-heritage-trees/e3699.html, 08/07/2021.
  • 2. Loke, M.H., J.E. Chambers, D.F. Rucker, O. Kuras, and P.B. Wilkinson, 2013. Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics, 95: 135-156.
  • 3. Pidlisecky, A., E. Haber, and R. Knight, 2007. RESINVM3D: A 3D resistivity inversion package. Geophysics, 72(2): H1-H10.
  • 4. Kieu, T.D., 2020. Inversion of multiple data sets acquired by different array configuration of geoelectrical resistivity method (in Vietnamese) Journal of Mining and Earth Sciences, 61(1): 52-60.
  • 5. Kemna, A., J. Vanderborght, B. Kulessa, and H. Vereecken, 2002. Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. Journal of Hydrology, 267(3): 125-146.
  • 6. Chambers, J.E., O. Kuras, P.I. Meldrum, R.D. Ogilvy, and J. Hollands, 2006. Electrical resistivity
  • tomography applied to geologic, hydrogeologic, and engineering investigations at a former wastedisposal site. Geophysics, 71(6): B231-B239.
  • 7. Dat, P.N., P.N. Kien, B.V. Thom, L.H. Phong, and D.T. Ninh, 2018. Determining the thickness of the weathering layer overlying the basalt in Cu Mga - Dak Lak area by 2D resistivity imaging, Journal of Mining and Earth Sciences, 59(6): 1-10.
  • 8. Perrone, A., V. Lapenna, and S. Piscitelli, 2014. Electrical resistivity tomography technique for landslide investigation: A review. Earth-Science Reviews, 135: 65-82.
  • 9. Samouëlian, A., I. Cousin, A. Tabbagh, A. Bruand, and G. Richard, 2005. Electrical resistivity survey in soil science: a review. Soil and Tillage Research, 83(2): 173-193.
  • 10. Bera, T.K., 2014. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review. Journal of medical engineering, 381251.
  • 11. Luo, Y., P. Abiri, S. Zhang, C.-C. Chang, A.H. Kaboodrangi, R. Li, A.K. Sahib, A. Bui, R. Kumar, M. Woo, Z. Li, R.R.S. Packard, Y.-C. Tai, and T.K. Hsiai, 2018. Non-Invasive Electrical Impedance Tomography for Multi-Scale Detection of Liver Fat Content. Theranostics, 8(6): 1636-1647.
  • 12. Sambuelli, L., L.V. Socco, and A. Godio, 2003. Ultrasonic, electric and radar measurements for living trees assessment. Bollettino di Geofisica Teorica ed Applicata, 44: 253-279.. Attia al Hagrey, S., 2007. Geophysical imaging of root-zone, trunk, and moisture heterogeneity. Journal of Experimental Botany, 58(4): 839-854.
  • 14. Jayawickreme, D.H., E.G. Jobbágy, and R.B. Jackson, 2014. Geophysical subsurface imaging for ecological applications, 201(4): 1170-1175.
  • 15. Corona-Lopez, D.D.J., S. Sommer, S.A. Rolfe, F. Podd, and B.D. Grieve, 2019. Electrical impedance tomography as a tool for phenotyping plant roots. Plant Methods, 15(1): p. 49.
  • 16. Cimpoiaşu, M.O., O. Kuras, T. Pridmore, and S.J. Mooney, 2020. Potential of geoelectrical methods to monitor root zone processes and structure: A review. Geoderma, 365: 114-232.
  • 17. Malmivuo, J. and R. Plonsey, 1995. Bioelectromagnetism. 26. Impedance Tomography, 420-427.
  • 18. Ehosioke, S., F. Nguyen, S. Rao, T. Kremer, E. Placencia-Gomez, J.A. Huisman, A. Kemna, M. Javaux, and S. Garré, 2020. Sensing the electrical properties of roots: A review, 19(1): e20082.
  • 19. Ganthaler, A., J. Sailer, A. Bär, A. Losso, and S. Mayr, 2019. Noninvasive Analysis of Tree Stems by Electrical Resistivity Tomography: Unraveling the Effects of Temperature, Water Status, and Electrode Installation. Frontiers in plant science, 10: 1455-1455.
  • 20. Polydorides, N., 2002. Image reconstruction algorithms for soft-field tomography, in Electrical Engineering and Electronics. University of Manchester : UMIST: University of Manchester : UMIST. p. 262.
  • 21. Schullcke, B., S. Krueger-Ziolek, B. Gong, and K. Moeller, 2016. Effect of the number of electrodes on the reconstructed lung shape in electrical impedance tomography. Current Directions in Biomedical Engineering, 2.
  • 22. Adler, A. and R. Guardo, 1996. Electrical impedance tomography: regularized imaging and contrast detection. IEEE Transactions on Medical Imaging, 15(2): 170-179.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-960110f1-56e8-4b5d-bab7-9e0cf1bd23ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.