Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Air quality is a critical aspect of environmental health, and its assessment and prediction serve as pivotal components in mitigating the adverse effects of air pollution. This study focuses on advancing air quality prediction in India through the application of cutting-edge deep learning techniques, specifically the Stacked Bidirectional Long Short-Term Memory (Bi-LSTM) and Convolutional Neural Network (CNN) architecture. Through meticulous preprocessing - encompassing missing value handling, normalization, and temporal sequencing - the dataset is prepared for the Stacked Bi-LSTM and CNN hybrid model. The model architecture leverages the temporal sequence-capturing capabilities of Stacked Bi-LSTM layers, enhancing it with the spatial feature extraction prowess of CNN layers. This integrated approach aims to address the intricate and nonlinear dependencies present in air quality time series data. During the training phase, the Adam optimizer is used to fine-tune the model’s hyperparameters, with Mean Squared Error (MSE) serving as the loss function. Important assessment metrics, including as Mean Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE), and MSE, are used to evaluate the performance of the model. Furthermore, this study conducts a detailed temporal analysis, unraveling diurnal, seasonal, and long-term trends in air quality fluctuations. The study aims to offer valuable insights into the temporal and spatial patterns of air quality in India, thereby aiding environmental policymakers, urban planners, and researchers in formulating effective strategies for air quality management. The application of Stacked Bi-LSTM and CNN architectures in this research holds promise for enhancing real-time forecasting accuracy and facilitating informed decision-making towards sustainable environmental practices.
Czasopismo
Rocznik
Tom
Strony
9--21
Opis fizyczny
Bibliogr. 30 poz., tab., wykr.
Twórcy
autor
- Department of Computer Science and Engineering, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India
autor
- Department of Artificial Intelligence and Data Science,Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India
autor
- Department of Artificial Intelligence and Data Science,Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India
Bibliografia
- 1. Akinosho, T. D., Oyedele, L. O., Bilal, M., Barrera-Animas, A. Y., Gbadamosi, A. Q. & Olawale, O. A. (2022). A scalable deep learning system for monitoring and forecasting pollutant concentration levels on UK highways. Ecological Informatics, 69, 101609. DOI:10.1016/j.ecoinf.2022.101609
- 2. Al-Eidi, S., Amsaad, F., Darwish, O., Tashtoush, Y., Alqahtani, A. & Niveshitha, N. (2023). Comparative Analysis Study for Air Quality Prediction in Smart Cities Using Regression Techniques. IEEE Access. DOI:10.1109/ACCESS.2023.3280129
- 3. Cao, Y., Zhang, D., Ding, S., Zhong, W. & Yan, C. (2023). A Hybrid Air Quality Prediction Model Based on Empirical Mode Decomposition. Tsinghua Science and Technology, 29(1), 99-111. DOI:10.26599/TST.2023.2200016
- 4. Dobrzyniewski, D., Szulczyński, B., Rybarczyk, P. & Gębicki, J. (2023). Process control of air stream deodorization from vapors of VOCs using a gas sensor matrix conducted in the biotrickling filter (BTF). Archives of Environmental Protection, 49(2). DOI:10.24425/aep.2023.144733
- 5. Drewil, G. I. & AlBahadili, R. J. (2022). Air pollution prediction using LSTM deep learning and metaheuristics algorithms. Measurement: Sensors, 24, 100546. DOI:10.1016/j.measen.2022.100546
- 6. Fang, Z., Yang, H., Li, C., Cheng, L., Zhao, M. & Xie, C. (2021). Prediction of PM2.5 hourly concentrations in Beijing based on machine learning algorithm and ground-based LiDAR. Archives of Environmental Protection, 47(3). DOI:10.24425/aep.2021.138474
- 7. Fu, L., Li, J. & Chen, Y. (2023). An innovative decision-making method for air quality monitoring based on big data-assisted artificial intelligence technique. Journal of Innovation & Knowledge, 8(2), 100294. DOI:10.1016/j.jik.2023.100294
- 8. Godłowska, J., Kaszowski, K. & Kaszowski, W. (2022). Application of the FAPPS system based on the CALPUFF model in short-term air pollution forecasting in Krakow and Lesser PolandApplication of the FAPPS system based on the CALPUFF model in short-term air pollution forecasting in Krakow and Lesser Poland. Archives of Environmental Protection, 48(3). DOI:10.24425/aep.2022.142698
- 9. Holnicki, P., Kałuszko, A. & Nahorski, Z. (2021). Analysis of emission abatement scenario to improve urban air quality. Archives of Environmental Protection, 47(2). DOI:10.24425/aep.2021.137281
- 10. Iskandaryan, D., Ramos, F. & Trilles, S. (2023). A set of deep learning algorithms for air quality prediction applications. Software Impacts, 17, 100562. DOI:10.1016/j.simpa.2023.100562
- 11. Iskandaryan, D., Ramos, F. & Trilles, S. (2023). Graph Neural Network for Air Quality Prediction: A Case Study in Madrid. IEEE Access, 11, 2729-2742. DOI:10.1109/ACCESS.2023.3244295
- 12. Janarthanan, R., Partheeban, P., Somasundaram, K. & Elamparithi, P. N. (2021). A deep learning approach for prediction of air quality index in a metropolitan city. Sustainable Cities and Society, 67, 102720. DOI:10.1016/j.scs.2021.102720
- 13. Jurado, X., Reiminger, N., Benmoussa, M., Vazquez, J. & Wemmert, C. (2022). Deep learning methods evaluation to predict air quality based on Computational Fluid Dynamics. Expert Systems with Applications, 203, 117294. DOI:10.1016/j.eswa.2022.117294
- 14. Kanmani, P., Selvaraj, P. & Burugari, V. K. (2022). An energy efficient approach of deep learning based soft sensor for air quality management. Measurement: Sensors, 24, 100460. DOI:10.1016/j.measen.2022.100460
- 15. Liu, B., Yan, S., Li, J., Qu, G., Li, Y., Lang, J. & Gu, R. (2019). A sequence-to-sequence air quality predictor based on the n-step recurrent prediction. IEEE Access, 7, 43331-43345. DOI:10.1109/ACCESS.2019.2903323
- 16. Liu, C., Pan, G., Song, D. & Wei, H. (2023). Air Quality Index Forecasting Via Genetic Algorithm-Based Improved Extreme Learning Machine. IEEE Access. DOI:10.1109/ACCESS.2023.3273346
- 17. Lu, T., Gu, C., Yuan, D., Zhang, K. & Shao, C. (2023). Deep learning model for displacement monitoring of super high arch dams based on measured temperature data. Measurement, 222, 113579. DOI:10.1016/j.measurement.2023.113579
- 18. Matthaios, V. N., Knibbs, L. D., Kramer, L. J., Crilley, L. R. & Bloss, W. J. (2023). Predicting real-time within-vehicle air pollution exposure with mass-balance and machine learning approaches using on-road and air quality data. Atmospheric Environment, 120233. DOI:10.1016/j.atmosenv.2023.120233
- 19. Prado-Rujas, I. I., García-Dopico, A., Serrano, E., Córdoba, M. L. & Pérez, M. S. (2024). A multivariable sensor-agnostic framework for spatio-temporal air quality forecasting based on Deep Learning. Engineering Applications of Artificial Intelligence, 127, 107271. DOI:10.1016/j.engappai.2023.107271
- 20. Shao, Q., Chen, J. & Jiang, T. (2023). A novel coupled optimization prediction model for air quality. IEEE Access. DOI:10.1109/ACCESS.2023.3267475
- 21. Shin, S., Baek, K. & So, H. (2023). Rapid monitoring of indoor air quality for efficient HVAC systems using fully convolutional network deep learning model. Building and Environment, 234, 110191. DOI:10.1016/j.buildenv.2023.110191
- 22. Wang, X., Wang, M., Liu, X., Mao, Y., Chen, Y. & Dai, S. (2024). Surveillance-image-based outdoor air quality monitoring. Environmental Science and Ecotechnology, 18, 100319. DOI:10.1016/j.ese.2024.100319
- 23. Wardana, I. N. K., Fahmy, S. A. & Gardner, J. W. (2023). TinyML Models for a Low-cost Air Quality Monitoring Device. IEEE Sensors Letters. DOI:10.1109/LSENS.2023.3247646
- 24. Wood, D. A. (2022). Local integrated air quality predictions from meteorology (2015 to 2020) with machine and deep learning assisted by data mining. Sustainability Analytics and Modeling, 2, 100002. DOI:10.1016/j.susanm.2022.100002
- 25. Yadav, N., Sorek-Hamer, M., Von Pohle, M., Asanjan, A. A., Sahasrabhojanee, A., Suel, E., Arku, R., Lingenfelter, V., Brauer, M., Ezzati, M. & Oza, N. (2023). Using Deep Transfer Learning and Satellite Imagery to Estimate Urban Air Quality in Data-Poor Regions. Environmental Pollution, 122914. DOI:10.1016/j.envpol.2023.122914
- 26. Yang, Y., Mei, G. & Izzo, S. (2022). Revealing influence of meteorological conditions on air quality prediction using explainable deep learning. IEEE Access, 10, 50755-50773. DOI:10.1109/ACCESS.2022.3163935
- 27. Yu, W., Nakisa, B., Ali, E., Loke, S. W., Stevanovic, S. & Guo, Y. (2023). Sensor-based indoor air temperature prediction using deep ensemble machine learning: An Australian urban environment case study. Urban Climate, 51, 101599. DOI:10.1016/j.uclim.2023.101599
- 28. Zhang, B., Wang, Z., Lu, Y., Li, M. Z., Yang, R., Pan, J., & Kou, Z. (2023). Air pollutant diffusion trend prediction based on deep learning for targeted season-North China as an example. Expert Systems with Applications, 232, 120718. DOI:10.1016/j.eswa.2023.120718
- 29. Zhang, Y., Wang, Y., Gao, M., Ma, Q., Zhao, J., Zhang, R., Wang, Q. & Huang, L. (2019). A predictive data feature exploration-based air quality prediction approach. IEEE Access, 7, 30732-30743. DOI:10.1109/ACCESS.2019.2903346
- 30. Zwierzchowski, R. & Różycka-Wrońska, E. (2021). Operational determinants of gaseous air pollutants emissions from coal-fired district heating sources. Archives of Environmental Protection, 47(3). DOI:10.24425/aep.2021.138473
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95fd5fae-6a25-4484-b2fb-8ac24b9143b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.