PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative study of the kinetic approach on the alcoholic fermentation procedure conducted in laboratory and scale-up systems by inverse gas chromatography

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The major objective of the present work was to compare the kinetic study of alcoholic fermentations conducted in the presence of wheat supported biocatalysts in laboratory scale and in a scale-up system of 80 L and to compare these results with those reported in literature. The kinetic study of fermentation processes was accomplished with the technique of reversed flow gas chromatography (RFGC), which is a version of inverse gas chromatography. The wine yeast species used was Saccharomyces cerevisiae AXAZ-1, and fermentations were conducted between 20 and 2°C. At low temperatures, maximal ethanol productivity and fermentation rate were reduced. The rate constants, determined through a mathematical model obtained from RFGC, were higher in the laboratory scale comparing to the scale-up system at the temperatures of 20 and 15°C. However, with the reduction of temperature, both systems presented almost similar values proving the great fermentative ability of immobilized cells even at extremely low temperatures. Activation energies of the alcoholic fermentations in the two systems presented their higher values at the second phase (stationary) compared to those observed at the other two phases (growth and decline).
Rocznik
Strony
371--389
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • University of Patras Department of Chemistry GR-26504 Patras Greece
autor
  • Technological Educational Institute of Kalamata Department of Food Technology 24100 Kalamata Greece
autor
  • University of Patras Department of Chemistry GR-26504 Patras Greece
  • University of Patras Department of Chemistry GR-26504 Patras Greece
Bibliografia
  • [1] D.J. Pollard and J.M. Woodley, Trends Biotechnol., 25, 66 (2007)
  • [2] A.J.J. Straathof, S. Panke, and A. Schmid, Curr. Opin. Biotechnol., 13, 548 (2002)
  • [3] J. Aleu, A.J. Bustillo, R. Hernandez-Galan, and I.G. Collado, Curr. Org. Chem., 10, 2037 (2006)
  • [4] I. Schmid, J.S. Dordick, B. Hauer, A. Kiener, M. Wubbots, and B. Witholt, Nature, 409, 258 (2001)
  • [5] S. Ichikawa, K. Takano, T. Kuroiwa, O. Hiruta, S. Sato, and S. Mukataka, J. Biosci. Bioeng., 93, 201 (2002)
  • [6] Y. Kourkoutas, M. Komaitis, A.A. Koutinas, and M. Kanellaki, J. Agr. Food. Chem., 49, 1417 (2001)
  • [7] G.Ch. Lainioti, J. Kapolos, A. Koliadima, and G. Karaiskakis, Chromatographia, 72, 1149 (2010)
  • [8] G.Ch. Lainioti, J. Kapolos, A. Koliadima, and G. Karaiskakis, J. Liq. Chromatogr. R. T., 34, 195 (2011)
  • [9] G.H. Fleet and G.M. Heard. In: G.M. Fleet (Ed) Wine Microbiology and Biotechnology, Harwood Academic Publishers, Switzerland, 1993, pp. 27
  • [10] R.S. Jackson, Wine Science: Principals and Applications, 3rd edn, Elsevier Science & Technology, United States, 2008, p. 332
  • [11] G.Ch. Lainioti, J. Kapolos, A. Koliadima, and G. Karaiskakis, J. Chromatogr. A., 1217, 1813 (2010)
  • [12] L. Farmakis, J. Sakellaraki, A. Koliadima, D. Gavril, and G. Karaiskakis, Starch, 52, 275 (2000)
  • [13] F. Gòdia, C. Casas, and C. Solá, J. Chem. Technol. Biotechnol., 41, 155 (1988)
  • [14] M.B. Reynders, D.E. Rawlings, and S.L. Harrison, Biotechnol. Lett., 18, 649 (1996)
  • [15] F. Ramon-Portugal, M.L. Delia-Dupuy, H. Pingaud, and J.P. Riba, J. Chem. Technol. Biotechnol., 68, 195 (1997)
  • [16] L.J. Chen, Y.L. Xu, F.W. Bai, W. Anderson, and M. Moo-Young, Biotechnol. Bioproc. E., 10, 115 (2005)
  • [17] M. Blanco, A.C. Peinado, and J. Mas, Anal. Chim. Acta., 556, 364 (2006)
  • [18] N.A. Katsanos and I. Georgiadou, J. Chem. Soc. Chem. Comm., 5, 242 (1980)
  • [19] G. Karaiskakis, N.A. Katsanos, I. Georgiadou, and A. Lycourghiotis, J. Chem. Soc. Faraday Trans. 1, 78, 2017 (1982)
  • [20] G. Karaiskakis, N.A. Katsanos, and A. Lycourghiotis, Can. J. Chem., 61, 1853 (1983).
  • [21] D. Gavril and G. Karaiskakis, Instrum. Sci. Technol., 25, 217 (1997)
  • [22] N. Economopoulos, N. Athanassopoulos, N.A. Katsanos, G. Karaiskakis, P. Agathonos, and Ch. Vassilakos, Separ. Sci. Technol., 27, 2055 (1992)
  • [23] K.A. Rashid, D. Gavril, N.A. Katsanos, and G. Karaiskakis, J. Chromatogr. A., 934, 31 (2001)
  • [24] J. Kapolos, N. Bakaoukas, A., Koliadima, and G. Karaiskakis, J. Phase Equilib. Diff., 26, 477 (2005).
  • [25] W.S. McGivern and J.A. Manion, J. Chromatogr. A., 1218, 8432 (2011)
  • [26] D. Gavril, A. Koliadima, and G. Karaiskakis, Langmuir, 15 (11), 3798 (1999)
  • [27] G. Karaiskakis and D. Gavril, J. Chromatogr., 1037, 147 (2004)
  • [28] N.A. Katsanos, G. Karaiskakis, and P. Agathonos, J. Chromatogr., 349, 369 (1986)
  • [29] G. Karaiskakis, J. Chromatogr. Sci., 23, 360 (1985)
  • [30] V. Sotiropoulou, N.A. Katsanos, H. Metaxa, and F. Roubani-Kalantzopoulou, Chromatographia, 42, 441 (1996)
  • [31] G. Karaiskakis, A. Lycourghiotis, and N.A. Katsanos, Chromatographia, 15, 351 (1982)
  • [32] T. Argiriou, A. Kalliafas, K. Psarianos, K. Kana, M. Kanellaki, and A.A. Koutinas, Appl. Biochem. Biotechnol., 36, 153 (1992)
  • [33] N.A. Katsanos, Flow Perturbation Gas Chromatography, Marcel Dekker, New York, 1988, p. 108
  • [34] G. Karaiskakis and N.A. Katsanos, J. Phys. Chem., 88, 3674 (1984)
  • [35] C.S. Ough, Am. J. Enol. Viticult., 17, 20 (1966)
  • [36] I. Caro, L. Pérez, and D. Cantero, Biotechnol. Bioeng., 38, 742 (1991)
  • [37] M. Ozilgen, M., Celik, and T.F. Bozoglu, Enzyme Microb. Technol., 13, 252 (1991)
  • [38] G. Birol, P. Doruker, B. Kirdar, Z.I. Onsan, and K. Ulgen, Process Biochem., 33, 763 (1998)
  • [39] P. Kandylis, A. Goula, and A.A. Koutinas, J. Agr. Food Chem., 56, 12037 (2008)
  • [40] P. Kandylis and A.A. Koutinas, J. Agr. Food Chem., 56, 3317 (2008)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95f98eb9-357a-418c-99ba-d8f7c5fa0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.