PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the possibility of replacing the rapid filtration process with ultrafiltration in surface water treatment systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presented study aimed to compare the effectiveness of ultrafiltration and filtration through a sand bed during the water treatment process after the coagulation and sedimentation. The study was conducted in two flow-type water treatment systems: the reference and the test system. Both systems functioned continuously with a throughput of 1 m3/h. The research has shown that both processes ensured a very effective removal of post-coagulation suspensions, however, ultrafiltration was more effective. The filtration process allowed a slightly higher removal of organic substances as compared to ultrafiltration. The effectiveness of the removal of organic substances was determined by the biological activity of sand beds, which is not allowed in the ultrafiltration process. Besides, during the filtration process, aluminum remaining after coagulation was more effectively removed. In turn, the ultrafiltration process ensured an almost 100% effectiveness in reducing the total microorganism cell count, while the effectiveness of the filtration process was approximately half of that. In the end, the possibility of replacing the filtration process with the ultrafiltration process is determined by the costs of both processes.
Rocznik
Strony
83--92
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wroclaw Municipal Water and Sewage Company, New Technologies Centre, Na Grobli 14/16, 50-421 Wrocław, Poland
  • Wroclaw Municipal Water and Sewage Company, New Technologies Centre, Na Grobli 14/16, 50-421 Wrocław, Poland
Bibliografia
  • [1] FAUST S.D., ALY O.M., Adsorption processes for water treatment, Elsevier, 2013.
  • [2] HAMDAOUI O., NAFFRECHOUX E., Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters, J. Hazard. Mater., 2007, 147 (1), 381–394. DOI: 10.1016/j.jhazmat.2007.01.021.
  • [3] ALI I., New generation adsorbents for water treatment, Chem. Rev., 2012, 112 (10), 5073–5091. DOI: 10.1021/cr300133d.
  • [4] WOLSKA M., MOŁCZAN M., SOLIPIWKO-PIEŚCIK A., URBAŃSKA-KOZŁOWSKA H., Coagulant cost optimization for surface water coagulation process, ACEE J., 2018, 11 (3), 153–161. DOI: 10.21307/ACEE-2018-048.
  • [5] MOGHADDAM S.S., MOGHADDAM M.A., ARAMI M., Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology, J. Hazard. Mater., 2010, 175 (1–3), 651–657. DOI: 10.1016/j.jhazmat.2009.10.058.
  • [6] ZULARISAM A.W., ISMAIL A.F., SALIM M.R., SAKINAH M., MATSUURA T., Application of co-agulation-ultrafiltration hybrid process for drinking water treatment: optimization of operating conditions using experimental design, Sep. Purif. Technol., 2009, 65 (2), 193–210. DOI:10.1016/j.seppur.2008. 10.018.
  • [7] MOHAJERI S., AZIZ H.A., ISA M.H., ZAHED M.A., ADLAN M.N., Statistical optimization of process parameters for landfill leachate treatment using electro-Fenton technique, J. Hazard. Mater., 2010, 176 (1–3), 749–758. DOI: 10.1016/j.jhazmat.2009.11.099.
  • [8] HÜNER I.D., GÜLEÇ H.A., Surface free energy analysis of polymeric ultrafiltration membranes used in food industry: a comparison of different approaches, GIDA J. Food, 2016, 41 (2), 77–84. DOI: 10.15237/gida.GD15046.
  • [9] PETRINIC I., KORENAK J., POVODNIK D., AHÉLIX-NIELSEN, Feasibility study of ultrafiltration/reverse osmosis (UF/RO)-based wastewater treatment and C. reuse in the metal finishing industry, J. Clean. Prod., 2015, 101, 292–300. DOI : 10.1016/j.jclepro.2015.04.022.
  • [10] DILAVER M., HOCAOĞLU S.M., SOYDEMIR G., DURSUN M., KESKINLER B., KOYUNCU I., AĞTAŞ M., Hot wastewater recovery by using ceramic membrane ultrafiltration and its reusability in textile industry, J. Clean. Prod., 2018, 171, 220–233. DOI: 10.1016/j.jclepro.2017.10.015.
  • [11] WANG X., MA B., BAI Y., LAN H., LIU H., QU J., Comparison of the effects of aluminum and iron(III) salts on ultrafiltration membrane biofouling in drinking water treatment, J. Environ. Sci., 2018, 63, 96–104. DOI: 10.1016/j.jes.2017.08.025.
  • [12] STEINHAUER T., SCHWING J., KRAUSS S., KULOZIK U., Enhancement of ultrafiltration-performance and improvement of hygienic quality during the production of whey concentrates, Int. Dairy J., 2015, 45, 8–14. DOI: 10.1016/j.idairyj.2015.01.010.
  • [13] WANG H., QU F., DING A., LIANG H., JIA R., LI K., LI G., Combined effects of PAC adsorption and in situ chlorination on membrane fouling in a pilot-scale coagulation and ultrafiltration process, Chem. Eng. J., 2016, 283, 1374–1383. DOI: 10.1016/j.cej.2015.08.093.
  • [14] MÉTHOT-HAINS S., BENOIT S., BOUCHARD C., DOYEN A., BAZINET L., POULIOT Y., Effect of transmembrane pressure control on energy efficiency during skim milk concentration by ultrafiltration at 10 and 50 °C, J. Dairy Sci., 2016, 99 (11), 8655-8664. DOI: 10.3168/jds.2016-11504.
  • [15] OZGUN H., TAO Y., ERSAHIN M.E., ZHOU Z., GIMENEZ J.B., SPANJERS H., VAN LIER J.B., Impact of temperature on feed-flow characteristics and filtration performance of an upflow anaerobic sludge blanket coupled ultrafiltration membrane treating municipal wastewater, Water Res., 2015, 83, 71–83. DOI: 10.1016/j.watres.2015.06.035.
  • [16] GAJDA M., ULBRICHT M., Capillary pore membranes with grafted diblock copolymers showing reversibly changing ultrafiltration properties with independent response to ions and temperature, J. Membr. Sci., 514 (2016) 510–517. DOI: 10.1016/j.memsci.2016.05.001.
  • [17] MATILAINEN A., VIENO N., TUHKANEN T., Efficiency of the activated carbon filtration in the natural organic matter removal, Environ. Int., 2006, 32 (3), 324–331. DOI: 10.1016/j.envint.2005.06.003.
  • [18] VEAL D.A., DEERE D., FERRARI B., PIPER J., ATTFIELD P.V., Fluorescence staining and flow cytometry for monitoring microbial cells, J. Imm. Meth., 2000, 243 (1–2), 191–210. DOI: 10.1016/S0022-1759(00)00234-9.
  • [19] HOEFEL D., GROOBY W.L., MONIS P.T., ANDREWS S., SAINT C.P., Enumeration of water-borne bacteria using viability assays and flow cytometry: a comparison to culture-based techniques, J. Immunol. Meth., 2003, 55 (3), 585–597. DOI: 10.1016/S0167-7012(03)00201-X.
  • [20] RAO P., MORROW W.R.III, AGHAJANZADEH A., SHEAFFER P., DOLLINGER C., BRUESKE S., CRESKO J., Energy considerations associated with increased adoption of seawater desalination in the United States, Des. Water. Treat., 2018, 445, 213–224. DOI: 10.1016/j.desal.2018.08.014.
  • [21] KASEMSET S., HE Z., MILLER D.J., FREEMAN B.D., SHARMA M.M., Effect of polydopamine deposition conditions on polysulfone ultrafiltration membrane properties and threshold flux during oil/water emulsion filtration, Polymer, 2016, 97, 247–257. DOI: 10.1016/j.polymer.2016.04.064.
  • [22] WOLSKA M., Efficiency of removal of biogenic substances from water in the process of biofiltration, Des. Water Treat., 2016, 57 (3), 1354–1360. DOI: 10.1080/19443994.2015.1017329.
  • [23] ZHANG D., XU H., WANG X., WANG D., DUAN J., MEN B., Influence of coagulation process on the ultrafiltration performance. The roles of Al species and characteristics of algae-laden water, Sep. Purif. Technol., 2017, 183, 32–42. DOI: 10.1016/j.seppur.2017.04.004.
  • [24] GIFFORD M., SELVY A., GERRITY D., Optimizing ozone-biofiltration systems for organic carbon removal in potable reuse applications, Ozone Sci. Eng., 2018, 40 (6), 427–440. DOI: 10.1080/01919512.2018.1509203.
  • [25] HASAN H.A., ABDULLAH S.R.S., KAMARUDIN S.K., KOFLI N.T., A review on the design criteria of biological aerated filter for COD, ammonia and manganese removal in drinking water treatment, Inst. Eng., 2009, 70 (4), 25–33, https://www.researchgate.net/publication/227690115_A_review_on_the_design_criteria_of biological_aerated_filter_for_COD_ammonia_and_manganese_removal_in_drinking_water_treatment
  • [26] BANAT F., AL-BASTAKI N., Treating dye wastewater by an integrated process of adsorption using activated carbon and ultrafiltration, Desalination, 2004, 170 (1), 69–75. DOI: 10.1016/j.desal.2004.02.093.
  • [27] CHEW C.M., AROUA M.K., HUSSAIN M.A., ISMAIL W.M.Z.W., Evaluation of ultrafiltration and conventional water treatment systems for sustainable development: an industrial scale case study, J. Clean. Prod., 2016, 112, 3152–3163. DOI: 10.1016/j.jclepro.2015.10.037.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95f6e0af-0e0a-4671-920b-fcc62e9861eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.