PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vibration control of a rotating shaft by passive mass-spring-disc dynamic vibration absorber

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Shaft is a machine element which is used to transmit rotary motion or torque. During transmission of motion, however, the machine shaft doesn’t always rotate with a constant angular velocity. Because of unstable current or due to sudden acceleration and deceleration, the machine shaft will rotate at a variable angular velocity. It is this rotary motion that generates the moment of inertial force, causing the machine shaft to have torsional deformation. However, due to the elasticity of the material, the shaft produces torsional vibration. Therefore, the main objective of this paper is to determine the optimal parameters of dynamic vibration absorber to eliminate torsional vibration of the rotating shaft that varies with time. The new results in this paper are summarized as follows: Firstly, the author determines the optimal parameters by using the minimum quadratic torque method. Secondly, the maximization of equivalent viscous resistance method is used for determining the optimal parameters. Thirdly, the author gives the optimal parameters of dynamic vibration absorber based on the fixed-point method. In this paper, the optimum parameters are found in an explicit analytical solutions, helping the scientists to easily find the optimal parameters for eliminating torsional vibration of the rotating shaft.
Rocznik
Strony
279--297
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Hung Yen University of Technology and Education, Hung Yen, Vietnam
Bibliografia
  • [1] G.B. Warburton. Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Engineering and Structural Dynamics, 10(3):381-401, 1982. doi: 10.1002/eqe.4290100304.
  • [2] R.W. Luft. Optimal tuned mass dampers for buildings. Journal of the Structural Division, 105(12): 2766-2772, 1979.
  • [3] J.P. Den Hartog. Mechanical Vibrations. 4th edition, McGraw-Hill, New York, 1956.
  • [4] E.S. Taylor. Eliminating crankshaft torsional vibration in radial aircraft engines. SAE Technical Paper 360105, 1936. doi: 10.4271/360105.
  • [5] R.R.R. Sarazin. Means adapted to reduce the torsional oscillations of crankshafts. Patent 2079226, USA, 1937.
  • [6] J.F. Madden. Constant frequency bifilar vibration absorber. Patent 4218187, USA, 1980.
  • [7] H.H. Denman. Tautochronic bifilar pendulum torsion absorbers for reciprocating engines. Journal of Sound and Vibration, 159(2):251-277, 1992. doi: 10.1016/0022-460X(92)90035-V.
  • [8] C.P. Chao, S.H. Shaw, and C.T. Lee. Stability of the unison response for a rotating system with multiple tautochronic pendulum vibration absorbers. Journal of Applied Mechanics, 64(1):149-156, 1997. doi: 10.1115/1.2787266.
  • [9] C.T. Lee, S.W. Shaw, and V.T. Coppola. A subharmonic vibration absorber for rotating machinery. Journal of Vibration and Acoustics, 119(4):590-595, 1997. doi: 10.1115/1.2889766.
  • [10] A.S. Alsuwaiyan and S.W. Shaw. Performance and dynamic stability of general-path centrifugal pendulum vibration absorbers. Journal of Sound and Vibration, 252(5):791-815, 2002. doi: 10.1006/jsvi.2000.3534.
  • [11] S.W. Shaw, P.M. Schmitz, and A.G. Haddow. Tautochronic vibration absorbers for rotating systems. Journal of Computational and Nonlinear Dynamics, 1(4):283-293, 2006. doi: 10.1115/1.2338652.
  • [12] J. Mayet and H. Ulbrich. Tautochronic centrifugal pendulum vibration absorbers: General design and analysis. Journal of Sound and Vibration, 333(3):711-729, 2014. doi: 10.1016/j.jsv.2013.09.042.
  • [13] E. Vitaliani, D. Di Rocco, and M. Sopouch. Modelling and simulation of general path centrifugal pendulum vibration absorbers. SAE Technical Paper 2015-24-2387, 2015. doi: 10.4271/2015-24-2387.
  • [14] C. Shi, S.W. Shaw, and R.G. Parker. Vibration reduction in a tilting rotor using centrifugal pendulum vibration absorbers. Journal of Sound and Vibration, 385:55-68, 2016. doi: 10.1016/j.jsv.2016.08.035.
  • [15] K. Liu and J. Liu. The damped dynamic vibration absorbers: revisited and new result. Journal of Sound and Vibration, 284(3-5):1181-1189, 2005. doi: 10.1016/j.jsv.2004.08.002.
  • [16] N. Hoang, Y. Fujino, and P. Warnitchai. Optimal tuned mass damper for seismic applications and practical design formulas. Engineering Structures, 30(3):707-715, 2008. doi: 10.1016/j.engstruct.2007.05.007.
  • [17] G. Bekdaş and S.M. Nigdeli. Estimating optimum parameters of tuned mass dampers using harmony search. Engineering Structures, 33(9):2716-2723, 2011. doi: 10.1016/j.engstruct.2011.05.024.
  • [18] K. Ikago, K. Saito, and N. Inoue. Seismic control of single-degree-of-freedom structure using tuned viscous mass damper. Earthquake Engineering and Structural Dynamics, 41(3):453-474, 2012. doi: 10.1002/eqe.1138.
  • [19] H. Garrido, O. Curadelli, and D. Ambrosini. Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper. Engineering Structures, 56:2149-2153, 2013. doi: 10.1016/j.engstruct.2013.08.044.
  • [20] M.G. Soto and H. Adeli. Tuned mass dampers. Archives of Computational Methods in Engineering, 20(4):419-431, 2013. doi: 10.1007/s11831-013-9091-7.
  • [21] X.T. Vu, N.D. Chinh, D.D. Khong, and V.C Tong. Closed-form solutions to the optimization of dynamic vibration absorber attached to multi-degree-of-freedom damped linear systems under torsional excitation using the fixed-point theory. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multibody Dynamics, 232(2):237-252, 2018. doi: 10.1177/1464419317725216.
  • [22] N.D. Chinh. Determination of optimal parameters of the tuned mass damper to reduce the torsional vibration of the shaft by using the principle of minimum kinetic energy. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multibody Dynamics, 233(2):327-335, 2019. doi: 10.1177/1464419318804064.
  • [23] N.D. Chinh. Optimal parameters of tuned mass dampers for machine shaft using the maximum equivalent viscous resistance method. Journal of Science and Technology in Civil Engineering, 14(1): 127-135, 2020. doi: 10.31814/stce.nuce2020-14(1)-11.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95f48638-e8a8-44e2-81d3-3d00c46529b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.