PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carrier transport mechanisms in the ZnO based heterojunctions grown by MBE

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a review of models of the current transport in different kind of heterojunctions (HJs) and their characteristics. In order to effectively deduce the dominant electron transport for the HJs based on ZnO or Zn1−xMgxO layers grown on Si substrate by MBE a comparison is performed – which type of the HJ exhibits better electrical properties. The current–voltage characteristics for the studied HJs were measured within 280–300 K. The transport properties of the HJs are explained in terms of Anderson model with reference to aforementioned current transport models. It is found, that the mechanisms of current transport for all of the studied HJs are similar. At a low forward voltage bias the tunneling current dominates while at medium voltage bias (0.5–1 V) multitunneling capture-emission prevails with the electron trap located at 0.1–0.25 eV below the bottom of a ZnO (Zn1−xMgxO) conduction band. Beyond this voltage bias space charge limited current governs the current transport.
Twórcy
  • Department of Quantum Technologies, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
  • Department of Quantum Technologies, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
  • Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, PL-02-668 Warsaw, Poland
autor
  • Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, PL-02-668 Warsaw, Poland
Bibliografia
  • [1] J.D. Ye, S.L. Gu, S.M. Zhu, W. Liu, S.M. Liu, R. Zhang, Y. Shi, Y.D. Zheng, Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions, Appl. Phys. Lett. 88 (2006) 182112(1)–182112(3).
  • [2] S. Aksoy, Y. Caglar, Effect of ambient temperature on electrical properties of nanostructure n-ZnO/p-Si heterojunction diode, Superlattices Microstruct. 51 (2012) 613–625.
  • [3] H.L. Lu, Y.Z. Gu, Y. Zhang, X.Y. Liu, P.F. Wang, Q.Q. Sun, S.J. Ding, D.W. Zhang, Effects of ZnO seed layer annealing temperature on the properties of n-ZnO NWs/Al2O3/p-Si heterojunction, Opt. Express 22 (2014) 22184–22189.
  • [4] Y. Zhang, J. Xu, B. Lin, Z. Fu, S. Zhong, C. Liu, Z. Zhang, Fabrication and electrical characterization of nanocrystalline ZnO/Si heterojunctions, Appl. Surf. Sci. 252 (2006) 3449–3453.
  • [5] J.D. Lee, C.Y. Park, H.S. Kim, J.J. Lee, Y.G. Choo, A study of conduction of ZnO film/p-Si heterojunction fabricated by photoinduced electrodeposition under illumination, J. Phys. D: Appl. Phys. 43 (2010) 365403–365408.
  • [6] S.Y. Liu, T. Chen, Y.L. Jiang, G.P. Ru, X.P. Qu, The effect of postannealing on the electrical properties of well-aligned n-ZnO nanorods/p-Si heterojunction, J. Appl. Phys. 105 (2009) 114504(1)–114504(5).
  • [7] S.R. Tankio Djiokap, Z.N. Urgessa, C.M. Mbulanga, A. Venter, J.R. Botha, Transport characteristics of n-ZnO/p-Si heterojunction as determined from temperature dependent current–voltage measurements, Physica B 480 (2016) 68–71.
  • [8] C. Klingshirn, ZnO: from basics towards applications, Phys. Status Solidi B 244 (2007) 3027–3073.
  • [9] E. Placzek-Popko, K.M. Paradowska, M.A. Pietrzyk, Z. Gumienny, P. Bieganski, A. Kozanecki, Deep traps and photo-electric properties of p-Si/MgO/n-Zn1−xMgxO heterojunction, J. Appl. Phys. 118 (2015)074501–074507.
  • [10] S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, John Wiley& Sons, New Jersey, 2007.
  • [11] S. Adachi, Handbook on Physical Properties of Semiconductors II–VI Compound Semiconductors, vol. 3, Springer, Berlin, 2004.
  • [12] K.E. Knutsen, R. Schifano, E.S. Marstein, B.G. Svensson, A. Yu. Kuznetsov, Prediction of high efficiency ZnMgO/Si solar cells suppressing carrier recombination by conduction band engineering, Phys. Status Solidi A 210 (2013) 585–588.
  • [13] A.R. Riben, D.L. Feucht, nGe/pGaAs heterojunctions, Solid-State Electron 9 (1966) 1055.
  • [14] H. Matsuura, T. Okuno, H. Okushi, K. Tanaka, Electrical properties of n-amorphous/p-crystalline silicon heterojunctions, J. Appl. Phys. 55 (1984) 1012–1019.
  • [15] P. Rosales-Quintero, A. Torres-Jacome, F.J. De la Hidalga-Wade, C. Zúñiga-Islas, W. Calleja-Arriaga, C. Reyes-Betanzo, Superficies Vacío 21 (June (2)) (2008) 1–8.
  • [16] A. Lampert, P. Mark, Current Injection in Solids, Academic, New York, 1970.
  • [17] A. Rose, Space-charge-limited currents in solids, Phys. Rev. 97 (1955) 1538–1544.
  • [18] F. Chaabouni, M. Abaab, B. Rezig, Characterization of n-ZnO/p-Si films grown by magnetron sputtering, Superlattices Microstruct. 39 (2006) 171–178.
  • [19] F.Z. Bedia, A. Bedia, B. Benyoucef, S. Hamzaou, Electrical characterization of n-ZnO/p-Si heterojunction prepared by spray pyrolysis technique, Phys. Procedia 55 (2014) 61–67.
  • [20] A.A.M. Farag, W.A. Farooq, F. Yakuphanoglu, Characterization and performance of Schottky diode based on wide band gap semiconductor ZnO using a low-cost and simplified sol–gel spin coating technique, Microelectron. Eng. 88 (2011) 2894–2899.
  • [21] D.C. Oh, T. Suzuki, J.J. Kim, H. Makino, T. Hanada, M.W. Cho, T. Yao, Electron-trap centers in ZnO layers grown by molecular-beam epitaxy, Appl. Phys. Lett. 86 (2005) 032909-1–032909-3.
  • [22] A.P. Roth, D.F. Williams, Properties of zinc oxide films prepared by the oxidation of diethyl zinc, J. Appl. Phys. 52 (1981) 6685.
  • [23] D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Electrical properties of bulk ZnO, Solid State Commun. 105 (1998) 399–401.
  • [24] C.G. Van de Walle, Hydrogen as a cause of doping in zinc oxide, Phys. Rev. Lett. 85 (2000) 1012–1015.
  • [25] D.M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B.K. Meyer, S.B. Orlinskii, J. Schmidt, P.G. Baranov, Hydrogen: a relevant shallow donor in zinc oxide, Phys. Rev. Lett. 88 (2002) 045504-1–045504-4.
Uwagi
EN
This article is an expanded version of the scientific reports presented at the International Conference on Semiconductor Nanostructures for Optoelectronics and Biosensors 2016 ICSeNOB2016, May 22–25, 2016, Rzeszow, Poland
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95ef22e9-7912-47ec-8a1c-55289089b9b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.