Identyfikatory
Warianty tytułu
Nieliniowe zjawiska w dynamice mikroturbin
Języki publikacji
Abstrakty
This paper presents the results of the analysis of the dynamic performance of a rotor that is a component of the ORC turbine set with the net electrical output of 100 kW and the nominal speed of 9000 rpm. This device is dedicated for municipal Local Energy Centres (LEC). The research was conducted using tools capable of performing the necessary simulation of the system operating under highly unstable conditions, i.e. in a strongly nonlinear regime. In this regard, the author of the paper followed the subsequent phases of whirl/whip formation manifested in the fluid film. Three constructional solutions within the scope of the bearing were examined with conventional and non-conventional lubricating mediums (mineral oils and low boiling mediums). An approach using rolling bearings was also considered. On the basis of those scientific studies, the decision to build a working prototype of the machine was taken. Such a prototype has already been manufactured, having regard to the outcome of the conducted analyses.
Praca przedstawia wyniki badań dynamiki mikroturbin ORC o mocy elektrycznej 100 KW i prędkości nominalnej 9000 obr./min. Urządzenie to jest dedykowane dla lokalnych klastrów energii (LEC). Badania przeprowadzone zostały za pomocą narzędzi badawczych umożliwiających ocenę stanu maszyny w warunkach jej niestabilnej pracy, a więc w zakresie silnej nieliniowości. Autor pracy prześledził rozwój wirów i bicia olejowego powstających w filmie olejowym po przekroczeniu granicy stabilności. Przebadane zostały trzy warianty konstrukcyjne łożysk ze smarowaniem konwencjonalnym oraz niekonwencjonalnym (olej mineralny i czynniki niskowrzące). Rozważony został również przypadek łożysk tocznych. Na podstawie uzyskanych wyników wybrana została wersja łożyskowania zastosowana przy budowie prototypu maszyny.
Rocznik
Tom
Strony
7--17
Opis fizyczny
Bibliogr. 18 poz., rys., wykr, zdj.
Twórcy
autor
- Institute of Fluid-Flow Machinery, Polish Academy of Sciences (IMP PAN), Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
- 1. Claeys M., Sinou J-J., Lambelin J-P., Todeschini R.: Experiments and numerical simulations of nonlinear vibration responses of an assembly with friction joints – Application on a test structure named “Harmony.” Mechanical Systems and Signal Processing 2016, 70-71, 1097-1116.
- 2. Chatzisavvas I., Boyaci A., Koutsovasilis P., Schweizer B.: Influence of hydrodynamic thrust bearings on the nonlinear oscillations of high-speed rotors. Journal of Sound and Vibration 2016, 380, 224-241.
- 3. Bhore S.P., Darpe A.K.: Nonlinear dynamics of flexible rotor supported on the gas foil journal bearings. Journal of Sound and Vibration 2013, 332, 5135-5150.
- 4. He Q., Peng H, Zhai P., Zhen Y.: The effects of unbalance orientation angle on the stability of the lateral torsion coupling vibration of an accelerated rotor with a transverse breathing crack. Mechanical Systems and Signal Processing 2016, 75, 330-344.
- 5. Urbanek J., Barszcz T., Strączkiewicz M., Jabłoński A.: Normalization of vibration signals generated under highly varying speed and load with application to signal separation. Mechanical Systems and Signal Processing 2017, 82, 13-31.
- 6. Yuan Z., Chu F., Lin Y.: External and internal coupling effects of rotor’s bending and torsional vibrations under unbalances. Journal of Sound and Vibration 2007, 299, 339-347.
- 7. Zhang X., Han Q., Peng Z., Chu F.: Stability analysis of rotor-bearing system with time- varying bearing stiffness due to finite number of balls and unbalanced force. Journal of Sound and Vibration 2013, 332, 6768-6784.
- 8. Diken H., Alnefaie K.: Effect of unbalanced rotor whirl on blade vibrations, Journal of Sound and Vibration 2011, 330, 3498-3506.
- 9. Yang Y., Cao D., Wang D.: Investigation of dynamic characteristics of a rotor system with Surface coatings. Mechanical Systems and Signal Processing 2017, 84, 469-484.
- 10. Kiciński J.:Rotor Dynamics, IFFM Publisher, 2006, pp. 539.
- 11. Kiciński J., Zywica: Numerical Analysis of defects in the rotor supporting structure. Advances in Vibration Engineering, 2012, 11(4), 297-304.
- 12. Kiciński J., Żywica G.: The numerical analysis of the steam microturbine rotor supported on foil bearings. Advances in Vibration Engineering 2012, 11(2), 113-120.
- 13. Kiciński J.: New method of state analysis and diagnostics of power micro-devices. Scientific Problems of Machines Operation and Maintenance 2011, 46(1), 57-69.
- 14. Kiciński J.: Computational model and strenght analysis of the steam microturbine with fluid-film bearings. Proc. of Int. Conf. of Vibration Engineering and Technology of Machinery VETOMAC-VIII, Gdańsk, 3–6 September, 2012, Wydawnictwo IMP PAN Gdańsk 2012, 333-342.
- 15. Kiciński J., Żywica G.: Steam Microturbines in Distributed Cogeneration. Springer, 2014, ISBN 978-3-319-12017-1.
- 16. Kiciński J.: Do we have a Chance for small-scale energy generation? The examples of technologies and devices for distributed energy systems in micro& small scale in Poland. Bulletin of the Polish Academy of Science, Technical Sciences 2013, 61(4), 749-756.
- 17. Kaygusuz A., Keles C., Alagoz B.B., Karabiber A.: Renewable energy integration to smart cities. Energy and Buildings 2013, 64, 456-462.
- 18. Scleicher-Tappeser R.: How renewables will change electricity market in next five years. Energy Policy 2013, 48, 64-75.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95eeb998-9ee2-49af-97e7-dca6fe9e7fa4