
Studia Geotechnica et Mechanica, 2021; 43(3): 285–306

 Open Access. © 2021 Litan Debnath, published by Sciendo.  This work is licensed under the Creative Commons
Attribution alone 4.0 License.

Open Access. © 2021 Litan Debnath, published by Sciendo. This work is licensed under the Creative Commons Attribution alone
4.0 License

Studia Geotechnica et Mechanica, 2021; aop

Original Study Open Access

Litan Debnath, S.M. ASCE*

Seismic bearing capacity of shallow strip footing
embedded in slope resting on two-layered soil
https://doi.org/10.2478/sgem-2021-0021
Received December 15, 2020; accepted June 20, 2021

Abstract: In this paper,the limit equilibrium method with
the pseudo-static approach is developed in the evaluation
of the influence of slope on the bearing capacity of a shal-
low foundation. Particle swarm optimisation (PSO) tech-
nique is applied to optimise the solution. Minimum bear-
ing capacity coefficients of shallow foundationnear slopes
are presented in the form of a design table for practical
use in geotechnical engineering. It has been shown that
the seismic bearing capacity coefficients reduce consider-
ably with an increase in seismic coefficient. Besides, the
magnitude of bearing capacity coefficients decreases fur-
ther with an increase in slope inclination.
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1 Literature Review
Many researchers analysed the bearing capacity based on
the static method in which the bearing capacity coeffi-
cients were calculated based on static loads on the foot-
ings and the weight of the soil in both active and passive
conditions. The classical bearing capacity theories started
from Rankine (1857), Prandtl (1921), Terzaghi (1943), Mey-
erhof (1957), Saran et al. (1989) and many others who ex-
tensively studied the bearing capacity of shallow footings
for static loading case. Terzaghi’s bearing capacity theory
(1943) was the first general theory for the bearing capac-
ity of soils. Okabe (1924) andMononobe andMatsuo (1929)
were the pioneers in the inclusion of ‘seismicity’ in the de-
sign of structures. IS: 1893-1984(Part-3) has also adopted
the Mononobe and Okabe method for the determination
of seismic active and passive earth pressure behind the re-
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taining wall. Sarma and lossifelis (1990), Richards et al.
(1993), Budhu and Al-Karni (1993) and Kumar and Kumar
(2003) considered the seismic forces both on the struc-
tures and on the supporting soil mass, which were not
considered byMeyerhof (1957). Researchers like Dormieux
and Pecker (1995), Paolucci and Pecker (1997), Soubra
(1997), Kumar and Rao (2002), Kumar (2003) and Choud-
hury and SubbaRao (2005) studied the seismic bearing ca-
pacity of shallow footings for horizontal ground. Sawada
et al. (1994), Sarma (1999) and Askari and Farzaneh (2003)
gave the solution for seismic bearing capacity of shal-
low foundations near the sloping ground. Again, some
work for surface footing on the sloping ground was car-
ried out by Zhu (2000), Kumar and Kumar (2003) and
Kumar and Rao (2003) using limit equilibrium analy-
sis, method of characteristics, etc. Choudhury and Rao
(2006),Castelli and Lentini (2012), Farzaneh and Askari
(2013) and Chakraborty and Kumar (2014) determined the
seismic bearing capacity of a shallow foundation embed-
ded in sloping ground by using the theorem of limit equi-
librium method and limit analysis in conjunction with fi-
nite elements and non-linear optimisation technique, re-
spectively.In their analysis, it was found that on increas-
ing slope inclination, the bearing capacity decreased. But
the researchers did not analyse the bearing capacity on
layered soil.Yamamoto (2010) investigated seismic bear-
ing capacity coefficients of spread and embedded foun-
dations near slope in the analytical method. The pseudo-
static approachwas used, and the seismic forces consisted
of a horizontal load applied to the foundation and inertia
of a soil mass. Chakraborty and Kumar (2013) evaluated
the bearing capacity factor on the sloping ground by ap-
plying lower bound (LB) finite element limit analysis in
conjunction with non-linear optimisation. Baazouzi et al.
(2016) studied thenumerical analysis of the bearing capac-
ity for a strip footing near a cohesionless slope and sub-
jected to a centred load using the finite difference code.
Button (1953) was the first to analyse the bearing capacity
of strip footing on two layers of clay under static loading
conditions. In this analysis, it was postulated that failure
surface at the ultimate load is cylindrical, where the cen-
tre of the cylindrical curve lies at the edge of the footing.
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Meyerhof and Hanna (1978) considered the case of foot-
ing reposing in various layers overlaying a strong soil de-
posit. Michalowski and Shi (1995) applied the kinematic
approach of limit analysis to account for the limit pressure
under footings to ascertain thebearing capacity of footings
reposingon two-layered soil. Purushothamaraj et al. (1974)
analysed the bearing capacity of shallow substratum util-
ising the upper bound (UB) limit analysis theorem. From
all these literature surveys, it is seen that the bearing ca-
pacity of shallow foundation embedded in slope on lay-
ered soil is still limited. In the present analysis,the seis-
mic bearing capacity of strip footing embedded in slope
on two-layered soil has been analysed by using the limit
equilibrium method with the pseudo-static approach.

2 Methodology
A strip footing having a width B0 is assumed to be on the
topof a two-layered c−ϕ soil as shown inFig. 1. The footing
(Fig. 2) having base AM is embedded in a sloping ground
DY with an inclination i to the horizontal ground surface.
The footing is resting on two-layered c-ϕ soil. Homoge-
neous, isotropic c-ϕ soil with surcharge load along with
the sloping ground is assumed in the analysis. Soil is as-
sumed to be a rigid, perfectly plastic medium satisfying
the Mohr–Coulomb failure criterion.Let the footing be at
a depth of (Df) below the ground surface (Fig. 2). Load (P1)
acts along the centre line of the footing. For shallow foun-
dation (Df≤B0), the overburden pressure is idealised here
as a triangular load distributionthat acts over the length of
RY at an angle of inclination (i). From the concept of Deb-
nath andGhosh (2018), the twomain regions, activewedge
and passive wedge, are thereby assumed to be acoulomb
failure mechanism as shown in Fig. 2. The active region
gives an active lateral thrust PA pushing against the pas-
sive resistance Pp. The wall frictional angle between the
active and passive zones is denoted as δ. The active and
passive zones are inclined at an angle αA1, αA2, αp1 αp2,
respectively. The detailed free body diagram of the active
zone and passive zone is shown in Figs 3–6. From the equi-
librium of the two wedges, the active pressure and pas-
sive resistance will be equal. Then, by equating the active
pressure and passive resistance, the authors found out the
maximum load acting on the foundation. After optimisa-
tion of the load pL by particle swarm optimisation (PSO)
technique, the authors found out theminimum resistance.
Parameters involved in the present study are as follows:
c1= cohesion of soil in the top layer, c2= cohesion of soil
in the bottom layer, ϕ1 = angle of friction of soil in the top

Figure 1: Geometry of footing on two-layered soil profile.

Figure 2: Failure mechanism and wedges assumed in present analy-
sis.

layer, ϕ2= angle of friction of soil in the bottom layer, 𝛾𝛾1=
unit weight of soil in the top layer, 𝛾𝛾2= unit weight of soil in
the bottom layer, αA1 = angle of slip surface at the top layer
in the active zone, αA2 = angle of slip surface at the bottom
layer in the active zone, αp1 = angle of slip surface at the
top layer in the passive zone, αp2 = angle of slip surface
at the bottom layer in the passive zone, δi= friction angle
along the surface between active and passive zones at the
ith layer.

2.1 Active pressure at the top layer

As shown in Fig. 3, wedge AMKJ is a known active wed-
gethat is posited at the top layer, giving pressure to the pas-
sive wedge. The weight of the wedge

WA = 2B0 − h1 cot αA1
2 h1𝛾𝛾1,

with the length of JK being equal to

(B0 − h1 cot αA1) (1)

Total load acting on the foundation is given by
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Meyerhof and Hanna (1978) considered the case of foot-
ing reposing in various layers overlaying a strong soil de-
posit. Michalowski and Shi (1995) applied the kinematic
approach of limit analysis to account for the limit pressure
under footings to ascertain thebearing capacity of footings
reposingon two-layered soil. Purushothamaraj et al. (1974)
analysed the bearing capacity of shallow substratum util-
ising the upper bound (UB) limit analysis theorem. From
all these literature surveys, it is seen that the bearing ca-
pacity of shallow foundation embedded in slope on lay-
ered soil is still limited. In the present analysis,the seis-
mic bearing capacity of strip footing embedded in slope
on two-layered soil has been analysed by using the limit
equilibrium method with the pseudo-static approach.

2 Methodology
A strip footing having a width B0 is assumed to be on the
topof a two-layered c−ϕ soil as shown inFig. 1. The footing
(Fig. 2) having base AM is embedded in a sloping ground
DY with an inclination i to the horizontal ground surface.
The footing is resting on two-layered c-ϕ soil. Homoge-
neous, isotropic c-ϕ soil with surcharge load along with
the sloping ground is assumed in the analysis. Soil is as-
sumed to be a rigid, perfectly plastic medium satisfying
the Mohr–Coulomb failure criterion.Let the footing be at
a depth of (Df) below the ground surface (Fig. 2). Load (P1)
acts along the centre line of the footing. For shallow foun-
dation (Df≤B0), the overburden pressure is idealised here
as a triangular load distributionthat acts over the length of
RY at an angle of inclination (i). From the concept of Deb-
nath andGhosh (2018), the twomain regions, activewedge
and passive wedge, are thereby assumed to be acoulomb
failure mechanism as shown in Fig. 2. The active region
gives an active lateral thrust PA pushing against the pas-
sive resistance Pp. The wall frictional angle between the
active and passive zones is denoted as δ. The active and
passive zones are inclined at an angle αA1, αA2, αp1 αp2,
respectively. The detailed free body diagram of the active
zone and passive zone is shown in Figs 3–6. From the equi-
librium of the two wedges, the active pressure and pas-
sive resistance will be equal. Then, by equating the active
pressure and passive resistance, the authors found out the
maximum load acting on the foundation. After optimisa-
tion of the load pL by particle swarm optimisation (PSO)
technique, the authors found out theminimum resistance.
Parameters involved in the present study are as follows:
c1= cohesion of soil in the top layer, c2= cohesion of soil
in the bottom layer, ϕ1 = angle of friction of soil in the top

Figure 1: Geometry of footing on two-layered soil profile.

Figure 2: Failure mechanism and wedges assumed in present analy-
sis.

layer, ϕ2= angle of friction of soil in the bottom layer, 𝛾𝛾1=
unit weight of soil in the top layer, 𝛾𝛾2= unit weight of soil in
the bottom layer, αA1 = angle of slip surface at the top layer
in the active zone, αA2 = angle of slip surface at the bottom
layer in the active zone, αp1 = angle of slip surface at the
top layer in the passive zone, αp2 = angle of slip surface
at the bottom layer in the passive zone, δi= friction angle
along the surface between active and passive zones at the
ith layer.

2.1 Active pressure at the top layer

As shown in Fig. 3, wedge AMKJ is a known active wed-
gethat is posited at the top layer, giving pressure to the pas-
sive wedge. The weight of the wedge

WA = 2B0 − h1 cot αA1
2 h1𝛾𝛾1,

with the length of JK being equal to

(B0 − h1 cot αA1) (1)

Total load acting on the foundation is given by
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Figure 3: Active wedge in Top layer.

P1 = pLB0 (2)

Total cohesive force (C1) on the slip lines AJ and MK is
calculated as

C1(MK) = c1h1, C1(AJ) = c1AJ = c1h1 cos ecαA1
C2(JK) = c2JK = c2 (B0 − h1 cot αA1)

(3)

The intensity of load at layer thickness h1 is expressed
as (depicted in Fig. 7)

pL1 =
pLB0

(B0 + h1)
(4)

Conceding to limit equilibrium conditions, the au-
thors can write

∑︁
V = 0

⇒ C1(AJ) sin αA1 + C1(MK) + RA1 cos (αA1 − ϕ1) +
+ PA1 sin δ1 + (pL1 + 𝛾𝛾1h1) JK (1 − kv) −
− (P1 +WA) (1 − kv) = 0

(5)

∑︁
H = 0

⇒ −C1(AJ) cos αA1 + RA1 sin (αA1 − ϕ1) − PA1 cos (δ1) −
−
{︀
(pL1 + 𝛾𝛾1h1) JKkh tanϕ2 + c2(JK)JK

}︀
+

+ (P1 +WA) kh = 0
(6)

After solving Equations 5 and 6 and modifying
both,the active pressure can be obtained as given below:

PA1 = pLB0
{︂
(1 − kv) sin (αA1 − ϕ1) + kh cos (αA1 − ϕ1)

cos (αA1 − ϕ1 − δ1)

}︂

−
{︂

pLB0
(B0 + h1)

(B0 − h1 cot αA1)
}︂

{︂
(1 − kv) sin (αA1 − ϕ1) + kh tanϕ2 cos (αA1 − ϕ1)

cos (αA1 − ϕ1 − δ1)

}︂
+

+ 2B0 − h1 cot αA1
2 h1𝛾𝛾1

{︂
(1 − kv) sin (αA1 − ϕ1) + kh cos (αA1 − ϕ1)

cos (αA1 − ϕ1 − δ1)

}︂
−

− 𝛾𝛾1h1 (B0 − h1 cot αA1){︂
(1 − kv) sin (αA1 − ϕ1) + kh tanϕ2 cos (αA1 − ϕ1)

cos (αA1 − ϕ1 − δ1)

}︂
−

− 2c1h1
sin (αA1 − ϕ1)

cos (αA1 − ϕ1 − δ1)
− c2B0

cos (αA1 − ϕ1)
cos (αA1 − ϕ1 − δ1)

− c1h1 cot αA1
cos (αA1 − ϕ1)

cos (αA1 − ϕ1 − δ1)
+

+ c2h1 cot αA1
cos (αA1 − ϕ1)

cos (αA1 − ϕ1 − δ1)
(7)

Figure 4: Active wedge in Bottom layer.

2.2 Active pressure at the bottom layer

From Fig. 4, active pressure distributing from the top layer
tothe wedge JKE.



288    Litan Debnath4 | Litan Debnath

The weight of the wedge:

WB =
1
2 (B0 − h1 cot αA1) h2𝛾𝛾2 (8)

Base shear at the interface between the two layers is
given as:

(pL1 + 𝛾𝛾1h1) kh tanφ2 + c2
and

(pL1 + 𝛾𝛾1h1) kh tanφ1 + c1

(9)

Total cohesive force at the slip lines JE and KE is ex-
pressed as:

C2(KE) = c2KE = c2h2,
C2(JE) = c2JE = c2h2 cos ecαA2
and
C1(JK) = c1JK = c1 (B0 − h1 cot αA1)

(10)

Conceding to limit equilibrium conditions,

∑︁
V = 0

⇒ C2(JE) sin αA2 + C2(KE)+
+ RA2 cos (αA2 − ϕ2) + PA2 sin δ2−
− (pL1 + 𝛾𝛾1h1) JK (1 − kv) −WB (1 − kv) = 0

(11)

∑︁
H = 0

⇒ C1(JK) − C2(JE) cos αA2+
+ RA2 sin (αA2 − ϕ2) − PA2 cos δ2+
+ (pL1 + 𝛾𝛾1h1) JKkh tanϕ1 +WBkh = 0

(12)

Solving Equations 11 and 12 and simplifying them, we
obtain

PA2 = f1(pL1, c2, ϕ2, 𝛾𝛾2, αA2) (13)

The details of equations of PA2 are given in Appendix
I.

Hence, total active pressure from both the layers is
given by

PA = PA1 + PA2 (14)

Figure 5: Passive wedge in Top layer.

2.3 Passive resistance at the top layer

Due to active pressure generated in the top layer, the
passive zone gives resistance to the active pressure. The
weight of the passive wedge, as depicted in Fig. 5, is given
as

Wc = [
h1 cot αp1 + 2h2 cot αp2

2
h1−

−
1
4

(︂
h1 cot αp1 + h2 cot αp2 −

Df

tan i
+
B0
2

)︂2
tan αp1]𝛾𝛾1

(15)

Extra loadingacting on the foundation is expressed as
surcharge load

q1 = 𝛾𝛾1(YM/2)

= 𝛾𝛾1
1
2 tan i

(︂ Df
tan i −

B0
2

)︂ (16)

Total surcharge load in the top layer of the passive
zone is given as

Q1 = q1MR

= 𝛾𝛾1
2 tan i

(︂ Df
tan i −

B0
2

)︂2 (17)

Total cohesive force in the slip lines KG and GD of the
passive wedge is given as

C1(KG) = c1KG = c1h2 cot αp2, C1(MK) = c1MK = c1h1
C1(GD) = c1GD = c1h1 cos ecαp1−

− c1
{︂
1
2

(︂
h1 cot αp1 + h2 cot αp2 −

Df
tan i +

B0
2

)︂
sec αp1

}︂

(18)
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∑︁
V = 0

⇒ −C1(MK) − C1(GD) sin αp1+
+ Rp1 cos

(︀
ϕ1 + αp1

)︀
− Pp1 sin δ1+

+ (q2 + 𝛾𝛾1h1) KG (1 − kv) −
− (Q1 +Wc) (1 − kv) = 0

(19)

∑︁
H = 0

⇒ −C1(GD) cos αp1 + C1(GK)−
− Rp1 sin

(︀
ϕ1 + αp1

)︀
+ Pp1 cos δ1+

+ (q2 + 𝛾𝛾1h1) KGkh tanϕ2+
+ (Q1 +Wc) kh = 0

(20)

SolvingEquations 19 and 20andmodifyingboth equa-
tions, passive resistance can be expressed as:

Pp1 = [
h1 cot αp1 + h2 cot αp2

2
h1−

−
1
4

(︂
h1 cot αp1 + h2 cot αp2 −

Df

tan i
+
B0
2

)︂2
tan αp1]𝛾𝛾1

{︃
(1 − kv) sin

(︀
ϕ1 + αp1

)︀
− kh cos

(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀
}︃

− 𝛾𝛾1h1h2 cot αp2

{︃
(1 − kv) sin

(︀
ϕ1 + αp1

)︀
+ kh tanϕ2 cos

(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀
}︃

− 𝛾𝛾1
tan

(︁ Df
tan i −

B0
2

)︁ (︀
2Df − B0 tan i

)︀

2Df + tan i (2h1 − B0)
h2 cot αp2

{︃
(1 − kv) sin

(︀
ϕ1 + αp1

)︀
+ kh tanϕ2 cos

(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀
}︃

+ 𝛾𝛾1 tan i
(︂ Df

tan i
−
B0
2

)︂2
{︃
(1 − kv) sin

(︀
ϕ1 + αp1

)︀
− kh cos

(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀
}︃
+

c1h1

{︃
sin

(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀
}︃

+ c1 sin αp1
[︂
h1
2

cos ecαp1 −
h2
2

cot αp2 sec αp1 +
1
2

Df

tan i
sec αp1 −

B0
4

sec αp1
]︂

{︃
sin

(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀
}︃

+ c1 cos αp1
[︂
h1
2

cos ecαp1 −
h2
2

cot αp2 sec αp1 +
1
2

Df

tan i
sec αp1 −

B0
4

sec αp1
]︂

cos
(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀ − c1h2 cot αp2
cos

(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀
(21)

2.4 Passive resistance at the bottom layer

Total weight of the passive wedge KGE, as shownin Fig. 6,
is calculated as

Figure 6: Passive wedge in Bottom layer.

Figure 7: Load spread mechanism.

WD = 1
2h2

2 cot αp2𝛾𝛾2 (22)

According to 2 : 1 load distribution method, intensity
of surcharge load at depth h1 can be written as

q2 =
q1MR

(MR + h1)

=
𝛾𝛾1
2 tan i

(︁
D

tan i −
B0
2

)︁2
(︁

Df
tan i −

B0
2

)︁
+ h1

(23)

Base shear between two passive wedges can be coded
as

(q2 + 𝛾𝛾1h1) kh tanφ2 + c1 and (q2 + 𝛾𝛾1h1) kh tanφ1 + c1
(24)

Cohesive forces in slip lines KE, KG and GE are given
as
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The weight of the wedge:

WB =
1
2 (B0 − h1 cot αA1) h2𝛾𝛾2 (8)

Base shear at the interface between the two layers is
given as:

(pL1 + 𝛾𝛾1h1) kh tanφ2 + c2
and

(pL1 + 𝛾𝛾1h1) kh tanφ1 + c1

(9)

Total cohesive force at the slip lines JE and KE is ex-
pressed as:

C2(KE) = c2KE = c2h2,
C2(JE) = c2JE = c2h2 cos ecαA2
and
C1(JK) = c1JK = c1 (B0 − h1 cot αA1)

(10)

Conceding to limit equilibrium conditions,

∑︁
V = 0

⇒ C2(JE) sin αA2 + C2(KE)+
+ RA2 cos (αA2 − ϕ2) + PA2 sin δ2−
− (pL1 + 𝛾𝛾1h1) JK (1 − kv) −WB (1 − kv) = 0

(11)

∑︁
H = 0

⇒ C1(JK) − C2(JE) cos αA2+
+ RA2 sin (αA2 − ϕ2) − PA2 cos δ2+
+ (pL1 + 𝛾𝛾1h1) JKkh tanϕ1 +WBkh = 0

(12)

Solving Equations 11 and 12 and simplifying them, we
obtain

PA2 = f1(pL1, c2, ϕ2, 𝛾𝛾2, αA2) (13)

The details of equations of PA2 are given in Appendix
I.

Hence, total active pressure from both the layers is
given by

PA = PA1 + PA2 (14)

Figure 5: Passive wedge in Top layer.

2.3 Passive resistance at the top layer

Due to active pressure generated in the top layer, the
passive zone gives resistance to the active pressure. The
weight of the passive wedge, as depicted in Fig. 5, is given
as

Wc = [
h1 cot αp1 + 2h2 cot αp2

2
h1−

−
1
4

(︂
h1 cot αp1 + h2 cot αp2 −

Df

tan i
+
B0
2

)︂2
tan αp1]𝛾𝛾1

(15)

Extra loadingacting on the foundation is expressed as
surcharge load

q1 = 𝛾𝛾1(YM/2)

= 𝛾𝛾1
1
2 tan i

(︂ Df
tan i −

B0
2

)︂ (16)

Total surcharge load in the top layer of the passive
zone is given as

Q1 = q1MR

= 𝛾𝛾1
2 tan i

(︂ Df
tan i −

B0
2

)︂2 (17)

Total cohesive force in the slip lines KG and GD of the
passive wedge is given as

C1(KG) = c1KG = c1h2 cot αp2, C1(MK) = c1MK = c1h1
C1(GD) = c1GD = c1h1 cos ecαp1−

− c1
{︂
1
2

(︂
h1 cot αp1 + h2 cot αp2 −

Df
tan i +

B0
2

)︂
sec αp1

}︂

(18)
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∑︁
V = 0

⇒ −C1(MK) − C1(GD) sin αp1+
+ Rp1 cos

(︀
ϕ1 + αp1

)︀
− Pp1 sin δ1+

+ (q2 + 𝛾𝛾1h1) KG (1 − kv) −
− (Q1 +Wc) (1 − kv) = 0

(19)

∑︁
H = 0

⇒ −C1(GD) cos αp1 + C1(GK)−
− Rp1 sin

(︀
ϕ1 + αp1

)︀
+ Pp1 cos δ1+

+ (q2 + 𝛾𝛾1h1) KGkh tanϕ2+
+ (Q1 +Wc) kh = 0

(20)

SolvingEquations 19 and 20andmodifyingboth equa-
tions, passive resistance can be expressed as:

Pp1 = [
h1 cot αp1 + h2 cot αp2

2
h1−

−
1
4

(︂
h1 cot αp1 + h2 cot αp2 −

Df

tan i
+
B0
2

)︂2
tan αp1]𝛾𝛾1

{︃
(1 − kv) sin

(︀
ϕ1 + αp1

)︀
− kh cos

(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀
}︃

− 𝛾𝛾1h1h2 cot αp2

{︃
(1 − kv) sin

(︀
ϕ1 + αp1

)︀
+ kh tanϕ2 cos

(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀
}︃

− 𝛾𝛾1
tan

(︁ Df
tan i −

B0
2

)︁ (︀
2Df − B0 tan i

)︀

2Df + tan i (2h1 − B0)
h2 cot αp2

{︃
(1 − kv) sin

(︀
ϕ1 + αp1

)︀
+ kh tanϕ2 cos

(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀
}︃

+ 𝛾𝛾1 tan i
(︂ Df

tan i
−
B0
2

)︂2
{︃
(1 − kv) sin

(︀
ϕ1 + αp1

)︀
− kh cos

(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀
}︃
+

c1h1

{︃
sin

(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀
}︃

+ c1 sin αp1
[︂
h1
2

cos ecαp1 −
h2
2

cot αp2 sec αp1 +
1
2

Df

tan i
sec αp1 −

B0
4

sec αp1
]︂

{︃
sin

(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀
}︃

+ c1 cos αp1
[︂
h1
2

cos ecαp1 −
h2
2

cot αp2 sec αp1 +
1
2

Df

tan i
sec αp1 −

B0
4

sec αp1
]︂

cos
(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀ − c1h2 cot αp2
cos

(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀
(21)

2.4 Passive resistance at the bottom layer

Total weight of the passive wedge KGE, as shownin Fig. 6,
is calculated as

Figure 6: Passive wedge in Bottom layer.

Figure 7: Load spread mechanism.

WD = 1
2h2

2 cot αp2𝛾𝛾2 (22)

According to 2 : 1 load distribution method, intensity
of surcharge load at depth h1 can be written as

q2 =
q1MR

(MR + h1)

=
𝛾𝛾1
2 tan i

(︁
D

tan i −
B0
2

)︁2
(︁

Df
tan i −

B0
2

)︁
+ h1

(23)

Base shear between two passive wedges can be coded
as

(q2 + 𝛾𝛾1h1) kh tanφ2 + c1 and (q2 + 𝛾𝛾1h1) kh tanφ1 + c1
(24)

Cohesive forces in slip lines KE, KG and GE are given
as
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Case 1: Considering the effective area of active zones

𝛾̄𝛾 =

(︁
2− h1

B0
cot αA1

)︁

2 h1𝛾𝛾1 +
(︁
1− h1

B0
cot αA1

)︁

2 h2𝛾𝛾2(︁
2− h1

B0
cot αA1

)︁

2 h1 +
(︁
1− h1

B0
cot αA1

)︁

2 h2
(33)

Case 2: Considering the effective area of passive zones

𝛾̄𝛾 =

{︂(︁
h1
B0

cot αp1 + 2 h2
B0

cot αp2
)︁

h1
2B0

− 1
4

(︁
h1
B0

cot αp1 + h2
B0

cot αp2 − Df
B0 tan i +

1
2

)︁2
tan α1

}︂
𝛾𝛾1 + 1

2

(︁
h2
B0

)︁2
cot αp2𝛾𝛾2

{︂(︁
h1
B0

cot αp1 + 2 h2
B0

cot αp2
)︁

h1
2B0

− 1
4

(︁
h1
B0

cot αp1 + h2
B0

cot αp2 − Df
B0 tan i +

1
2

)︁2
tan α1

}︂
+ 1

2

(︁
h2
B0

)︁2
cot αp2

(34)

The bearing capacity factor
(︀
N𝛾𝛾′

)︀
is a function of sev-

eral parameters including cohesion, surcharge and unit
weight. It can be expressed as:

N𝛾𝛾′′ =
(︂
a1
e1

+ b1
e1

+ 2c̄
𝛾̄𝛾B0

d1
e1

)︂
(35)

The details of the equations a1, b1, e1 and d1are given
in Appendix II.

Where c̄ is averaged cohesion in each layer in the slip
line is shown by

c̄ = c1h1 + c2h2
h1 + h2

(36)

a1, b1, e1 and d1 are dimensionless equations.
In seismic condition,

(︀
N𝛾𝛾′′

)︀
canbe expressedas

(︀
N𝛾𝛾E

)︀
and in static condition,

(︀
N𝛾𝛾′′

)︀
can be expressed as

(︀
N𝛾𝛾S

)︀
,

whereas
(︀
N𝛾𝛾′′

)︀
is the unity factor for the simultaneous re-

sistance of unit weight, surcharge and cohesion.

3 Results and Discussion
The bearing capacity factor

(︀
N𝛾𝛾′′

)︀
has been computed by

PSO algorithm, with the optimum
(︀
N𝛾𝛾′′

)︀
optimized w.r.t.

variables αA1, αA2, αp1 and αp2. The minimum value is
taken as an optimised value. The design charts of the
obtained bearing capacity coefficients

(︀
N𝛾𝛾′′

)︀
for differ-

ent values of slope angle (i) are shown in Figs 8 and 9
(ϕ = 30∘, 40∘, Df

B0
= 1). It has been observed that

(︀
N𝛾𝛾′′

)︀
decreases when the slope angle (i) increases. The results
obtained from MATLAB are summarised in design Tables
1 and 2. Using these design tables, the bearing capacity
coefficients of the strip footing near slope are easily ob-
tained with sufficient accuracy from the engineering point
of view.Undrained bearing capacity is expressed as Ncs in
the design tables.

Figure 8: Design chart of Bearing capacity coeflcient at ϕ2 =
30∘ , δ2 = ϕ2/2, i = 150, δ1/δ2 = 0.8, kv = kh/2, 𝛾𝛾1/𝛾𝛾2 =
0.8, Df /B0 = 0.5, h1/B0 = 0.25, 2c2/B0𝛾𝛾2 = 0.2, c1/c2 = 0.8.

3.1 Computation of Ncs

Merifield et al. (1999) investigated the bearing capacity of a
strip footing resting on a two-layer clay deposit with a hor-
izontal ground surface and proposed a modified bearing
capacity factor Nc*, which can be expressed as:

Nc
* = qu

c1
(37)

where qu= ultimate bearing capacity and c1= undrained
shear strength of the top layer.

Similarly, a dimensionless undrained bearing capac-
ity factor Ncs is defined in the present study, which is a
function of the parameters cu/𝛾𝛾B0, Df /B0, c1/c2, i, kh
and it can be described by the following equation:

Ncs = qult/c1 = f
(︀
cu/𝛾𝛾B0, Df /B0, c1/c2, i, kh

)︀
(38)
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Case 1: Considering the effective area of active zones

𝛾̄𝛾 =

(︁
2− h1

B0
cot αA1

)︁

2 h1𝛾𝛾1 +
(︁
1− h1

B0
cot αA1

)︁

2 h2𝛾𝛾2(︁
2− h1

B0
cot αA1

)︁

2 h1 +
(︁
1− h1

B0
cot αA1

)︁

2 h2
(33)

Case 2: Considering the effective area of passive zones

𝛾̄𝛾 =

{︂(︁
h1
B0

cot αp1 + 2 h2
B0

cot αp2
)︁

h1
2B0

− 1
4

(︁
h1
B0

cot αp1 + h2
B0

cot αp2 − Df
B0 tan i +

1
2

)︁2
tan α1

}︂
𝛾𝛾1 + 1

2

(︁
h2
B0

)︁2
cot αp2𝛾𝛾2

{︂(︁
h1
B0

cot αp1 + 2 h2
B0

cot αp2
)︁

h1
2B0

− 1
4

(︁
h1
B0

cot αp1 + h2
B0

cot αp2 − Df
B0 tan i +

1
2

)︁2
tan α1

}︂
+ 1

2

(︁
h2
B0

)︁2
cot αp2

(34)

The bearing capacity factor
(︀
N𝛾𝛾′

)︀
is a function of sev-

eral parameters including cohesion, surcharge and unit
weight. It can be expressed as:

N𝛾𝛾′′ =
(︂
a1
e1

+ b1
e1

+ 2c̄
𝛾̄𝛾B0

d1
e1

)︂
(35)

The details of the equations a1, b1, e1 and d1are given
in Appendix II.

Where c̄ is averaged cohesion in each layer in the slip
line is shown by

c̄ = c1h1 + c2h2
h1 + h2

(36)

a1, b1, e1 and d1 are dimensionless equations.
In seismic condition,

(︀
N𝛾𝛾′′

)︀
canbe expressedas

(︀
N𝛾𝛾E

)︀
and in static condition,

(︀
N𝛾𝛾′′

)︀
can be expressed as

(︀
N𝛾𝛾S

)︀
,

whereas
(︀
N𝛾𝛾′′

)︀
is the unity factor for the simultaneous re-

sistance of unit weight, surcharge and cohesion.

3 Results and Discussion
The bearing capacity factor

(︀
N𝛾𝛾′′

)︀
has been computed by

PSO algorithm, with the optimum
(︀
N𝛾𝛾′′

)︀
optimized w.r.t.

variables αA1, αA2, αp1 and αp2. The minimum value is
taken as an optimised value. The design charts of the
obtained bearing capacity coefficients

(︀
N𝛾𝛾′′

)︀
for differ-

ent values of slope angle (i) are shown in Figs 8 and 9
(ϕ = 30∘, 40∘, Df

B0
= 1). It has been observed that

(︀
N𝛾𝛾′′

)︀
decreases when the slope angle (i) increases. The results
obtained from MATLAB are summarised in design Tables
1 and 2. Using these design tables, the bearing capacity
coefficients of the strip footing near slope are easily ob-
tained with sufficient accuracy from the engineering point
of view.Undrained bearing capacity is expressed as Ncs in
the design tables.

Figure 8: Design chart of Bearing capacity coeflcient at ϕ2 =
30∘ , δ2 = ϕ2/2, i = 150, δ1/δ2 = 0.8, kv = kh/2, 𝛾𝛾1/𝛾𝛾2 =
0.8, Df /B0 = 0.5, h1/B0 = 0.25, 2c2/B0𝛾𝛾2 = 0.2, c1/c2 = 0.8.

3.1 Computation of Ncs

Merifield et al. (1999) investigated the bearing capacity of a
strip footing resting on a two-layer clay deposit with a hor-
izontal ground surface and proposed a modified bearing
capacity factor Nc*, which can be expressed as:

Nc
* = qu

c1
(37)

where qu= ultimate bearing capacity and c1= undrained
shear strength of the top layer.

Similarly, a dimensionless undrained bearing capac-
ity factor Ncs is defined in the present study, which is a
function of the parameters cu/𝛾𝛾B0, Df /B0, c1/c2, i, kh
and it can be described by the following equation:

Ncs = qult/c1 = f
(︀
cu/𝛾𝛾B0, Df /B0, c1/c2, i, kh

)︀
(38)
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Table 1: Undrained seismic bearing capacity Ncs for strip footing placed adjacent to two layered slope with i=15∘.

kh Df/B0 c1/c2
c1/𝛾𝛾B0 kh Df/B0 c1/c2

c1/𝛾𝛾B0

1 2 4 6 1 2 4 6

0

0.25

0.25 5.52 5.54 5.56 5.56

0

0.50

0.25 4.54 4.60 4.62 4.64
0.5 5.52 5.54 5.56 5.56 0.5 4.52 4.60 4.61 4.63
0.75 5.42 5.37 5.43 5.46 0.75 4.52 4.60 4.60 4.62
1 4.74 4.40 4.41 4.42 1 4.36 4.42 4.44 4.47
1.5 3.05 3.17 3.22 3.22 1.5 3.32 3.45 3.52 3.54
2 2.4 2.52 2.58 2.6 2 1.55 2.82 2.90 2.92
3 - 1.80 1.85 1.88 3 – 2.12 2.22 2.24
4 - 0.6 1.51 1.53 4 – 0.91 1.84 1.90
5 - – 1.29 1.31 5 – – 1.61 1.64

0.75

0.25 4.50 4.46 4.25 4.49

1

0.25 4.40 4.49 4.52 4.53
0.5 4.5 4.48 4.53 4.59 0.5 4.39 4.49 4.52 4.53
0.75 4.4 4.4 4.54 4.58 0.75 4.38 4.49 4.52 4.53
1 4.35 4.2 4.45 4.49 1 4.38 4.44 4.47 4.48
1.5 4.05 3.84 3.93 3.96 1.5 3.88 4.2 4.3 4.33
2 3.45 3.24 3.36 3.4 2 1.87 3.62 3.76 3.82
3 - 2.44 2.62 2.68 3 – 2.7 3.07 3.13
4 - 1.12 2.20 2.28 4 – 1.38 2.64 2.71
5 - – 1.92 2.0 5 – – 2.27 2.42

1.25

0.25 4.42 4.46 4.50 4.52

1.5

0.25 4.44 4.50 4.52 4.53
0.5 4.41 4.43 4.48 4.51 0.5 4.41 4.49 4.52 4.53
0.75 4.40 4.42 4.47 4.50 0.75 4.41 4.49 4.52 4.54
1 4.39 4.41 4.45 4.48 1 4.38 4.44 4.47 4.48
1.5 4.01 3.59 3.74 3.85 1.5 4.17 4.49 4.52 4.44
2 3.67 3.2 3.42 3.45 2 2.34 4.18 4.31 4.37
3 - 2.64 2.92 2.97 3 – 3.1 3.54 3.74
4 - 1.67 2.59 2.67 4 – 1.92 3.3 3.43
5 - – 2.36 2.48 5 – – 2.87 3.12

0.1

0.25

0.25 4.84 4.79 4.8 4.81

0.1

0.5

0.25 4.12 4.2 4.23 4.24
0.5 4.82 4.78 4.8 4.81 0.5 4.13 4.2 4.24 4.24
0.75 4.64 4.79 4.8 4.81 0.75 4.13 4.2 4.24 4.24
1 4.12 4.15 4.2 4.21 1 4.06 4.15 4.19 4.21
1.5 - 3.03 3.09 3.11 1.5 – 3.37 3.46 3.5
2 - 2.42 2.49 2.51 2 – 2.76 2.87 2.91
3 - – 1.82 1.87 3 – – 2.21 2.25
4 - – 1.47 1.51 4 – – 1.85 1.89
5 - – – 1.28 5 – – – 1.65

0.75

0.25 4.11 4.14 4.18 4.2

1

0.25 4.06 4.15 4.18 4.19
0.5 4.08 4.13 4.18 4.19 0.5 4.05 4.14 4.19 4.19
0.75 4.06 4.14 4.18 4.19 0.75 4.04 4.13 4.18 4.19
1 4.04 4.15 4.2 4.21 1 4.02 4.11 4.14 4.17
1.5 - 3.74 3.85 3.89 1.5 – 4.07 4.18 4.2
2 - 3.13 3.31 3.36 2 – 3.48 3.71 3.79
3 - – 2.61 2.68 3 – – 3.01 3.1
4 - – 2.14 2.28 4 – – 2.34 2.67
5 - – – 2.02 5 – – – 2.38

1.25

0.25 4.08 4.14 4.18 4.19

1.5

0.25 4.05 4.14 4.18 4.19
0.5 4.06 4.14 4.18 4.2 0.5 4.04 4.14 4.18 4.19
0.75 4.05 4.13 4.18 4.19 0.75 4.05 4.14 4.18 4.19
1 4.04 4.15 4.2 4.21 1 4.06 4.14 4.19 4.2
1.5 - 4.14 4.19 4.2 1.5 – 4.14 4.19 4.2
2 - 3.84 4.07 4.16 2 – 3.95 4.18 4.2
3 - – 3.37 3.48 3 – – 3.67 3.82
4 - – 2.54 3.05 4 – – 2.72 3.38
5 - – – 2.68 5 – – – 2.98
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Table 2: Undrained seismic bearing capacity Ncs for strip footing placed adjacent to two layered slope with i=30∘.

kh Df/B0 c1/c2
c1/𝛾𝛾B0 kh Df/B0 c1/c2

c1/𝛾𝛾B0

1 2 4 6 1 2 4 6

0

0.25

0.25 5.12 5.16 5.18 5.19

0

0.5

0.25 4.06 4.14 4.21 4.23
0.5 5.12 5.16 5.18 5.19 0.5 4.05 4.13 4.19 4.22
0.75 4.82 4.91 4.96 4.97 0.75 4.03 4.11 4.17 4.20
1 3.8 3.96 4.03 4.05 1 3.8 3.96 4.06 4.08
1.5 2.23 2.81 2.9 2.93 1.5 2.32 3.01 3.10 3.12
2 – 2.18 2.3 2.33 2 – 2.45 2.61 2.65
3 – 1.25 1.68 1.72 3 – 1.44 2 2.06
4 – – 1.33 1.38 4 – – 1.65 1.72
5 – – 1 1.17 5 – – 1.24 1.5

0.75

0.25 3.82 3.97 4.06 4.09

1

0.25 3.80 3.92 4.04 4.06
0.5 3.83 3.97 4.06 4.09 0.5 3.80 3.92 4.04 4.06
0.75 3.82 3.97 4.07 4.09 0.75 3.80 3.91 4.04 4.06
1 3.8 3.96 4.06 4.09 1 3.82 3.96 4.03 4.05
1.5 2.51 3.25 3.37 3.41 1.5 2.64 3.44 3.59 3.64
2 – 2.73 2.9 2.95 2 – 2.96 3.17 3.23
3 – 1.67 2.31 2.38 3 – 1.86 2.56 2.67
4 – – 1.92 2.05 4 – – 2.17 2.34
5 – – 1.5 1.8 5 – – 1.74 2.07

1.25

0.25 3.83 3.96 4.03 4.06

1.5

0.25 3.8 3.96 4.03 4.05
0.5 3.83 3.96 4.03 4.05 0.5 3.79 3.96 4.02 4.04
0.75 3.83 3.96 4.03 4.05 0.75 3.8 3.96 4.03 4.05
1 3.83 3.96 4.03 4.05 1 3.8 3.96 4.03 4.05
1.5 2.74 3.65 3.84 3.9 1.5 2.8 3.84 4.01 4.04
2 – 3.2 3.45 3.53 2 – 3.41 3.71 3.8
3 – 2.1 2.9 3.02 3 – 2.33 3.18 3.32
4 – – 2.43 2.64 4 – – 2.69 2.94
5 – – 2.02 2.35 5 – – 2.28 2.64

0.1

0.25

0.25 4.25 4.31 4.34 4.34

0.1

0.5

0.25 3.57 3.68 3.74 3.76
0.5 4.25 4.31 4.34 4.35 0.5 3.57 3.69 3.74 3.76
0.75 4.25 4.31 4.33 4.33 0.75 3.57 3.69 3.74 3.76
1 3.44 3.6 3.67 3.7 1 3.44 3.61 3.68 3.71
1.5 – 2.6 2.7 2.73 1.5 – 2.82 2.94 2.97
2 – 2.03 2.15 2.19 2 – 2.29 2.46 2.5
3 – – 1.57 1.61 3 – – 1.89 1.95
4 – – 1.23 1.3 4 – – 1.48 1.64
5 – – – 1.1 5 – – – 1.4

0.75

0.25 3.45 3.61 3.68 3.7

1

0.25 3.44 3.61 3.68 3.7
0.5 3.45 3.61 3.68 3.7 0.5 3.44 3.61 3.68 3.7
0.75 3.45 3.61 3.68 3.7 0.75 3.45 3.61 3.68 3.71
1 3.45 3.61 3.68 3.7 1 3.45 3.61 3.68 3.7
1.5 – 3.04 3.18 3.22 1.5 – 3.23 3.44 3.5
2 – 2.55 2.75 2.81 2 – 2.78 3.04 3.12
3 – – 2.2 2.28 3 – – 2.5 2.62
4 – – 1.74 1.96 4 – – 2.03 2.27
5 – – – 1.74 5 – – – 1.97

1.25

0.25 3.45 3.61 3.68 3.67

1.5

0.25 3.44 3.61 3.68 3.7
0.5 3.44 3.61 3.68 3.67 0.5 3.44 3.61 3.68 3.7
0.75 3.44 3.61 3.68 3.67 0.75 3.44 3.61 3.68 3.7
1 3.45 3.61 3.68 3.7 1 3.45 3.62 3.68 3.7
1.5 – 3.47 3.68 3.71 1.5 – 3.61 3.68 3.7
2 – 2.95 3.3 3.38 2 – 3.13 3.59 3.68
3 – – 2.76 2.91 3 – – 3.06 3.24
4 – – 2.18 2.54 4 – – 2.33 2.86
5 – – – 2.22 5 – – – 2.53
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Table 2: Undrained seismic bearing capacity Ncs for strip footing placed adjacent to two layered slope with i=30∘.

kh Df/B0 c1/c2
c1/𝛾𝛾B0 kh Df/B0 c1/c2

c1/𝛾𝛾B0

1 2 4 6 1 2 4 6

0

0.25

0.25 5.12 5.16 5.18 5.19

0

0.5

0.25 4.06 4.14 4.21 4.23
0.5 5.12 5.16 5.18 5.19 0.5 4.05 4.13 4.19 4.22
0.75 4.82 4.91 4.96 4.97 0.75 4.03 4.11 4.17 4.20
1 3.8 3.96 4.03 4.05 1 3.8 3.96 4.06 4.08
1.5 2.23 2.81 2.9 2.93 1.5 2.32 3.01 3.10 3.12
2 – 2.18 2.3 2.33 2 – 2.45 2.61 2.65
3 – 1.25 1.68 1.72 3 – 1.44 2 2.06
4 – – 1.33 1.38 4 – – 1.65 1.72
5 – – 1 1.17 5 – – 1.24 1.5

0.75

0.25 3.82 3.97 4.06 4.09

1

0.25 3.80 3.92 4.04 4.06
0.5 3.83 3.97 4.06 4.09 0.5 3.80 3.92 4.04 4.06
0.75 3.82 3.97 4.07 4.09 0.75 3.80 3.91 4.04 4.06
1 3.8 3.96 4.06 4.09 1 3.82 3.96 4.03 4.05
1.5 2.51 3.25 3.37 3.41 1.5 2.64 3.44 3.59 3.64
2 – 2.73 2.9 2.95 2 – 2.96 3.17 3.23
3 – 1.67 2.31 2.38 3 – 1.86 2.56 2.67
4 – – 1.92 2.05 4 – – 2.17 2.34
5 – – 1.5 1.8 5 – – 1.74 2.07

1.25

0.25 3.83 3.96 4.03 4.06

1.5

0.25 3.8 3.96 4.03 4.05
0.5 3.83 3.96 4.03 4.05 0.5 3.79 3.96 4.02 4.04
0.75 3.83 3.96 4.03 4.05 0.75 3.8 3.96 4.03 4.05
1 3.83 3.96 4.03 4.05 1 3.8 3.96 4.03 4.05
1.5 2.74 3.65 3.84 3.9 1.5 2.8 3.84 4.01 4.04
2 – 3.2 3.45 3.53 2 – 3.41 3.71 3.8
3 – 2.1 2.9 3.02 3 – 2.33 3.18 3.32
4 – – 2.43 2.64 4 – – 2.69 2.94
5 – – 2.02 2.35 5 – – 2.28 2.64

0.1

0.25

0.25 4.25 4.31 4.34 4.34

0.1

0.5

0.25 3.57 3.68 3.74 3.76
0.5 4.25 4.31 4.34 4.35 0.5 3.57 3.69 3.74 3.76
0.75 4.25 4.31 4.33 4.33 0.75 3.57 3.69 3.74 3.76
1 3.44 3.6 3.67 3.7 1 3.44 3.61 3.68 3.71
1.5 – 2.6 2.7 2.73 1.5 – 2.82 2.94 2.97
2 – 2.03 2.15 2.19 2 – 2.29 2.46 2.5
3 – – 1.57 1.61 3 – – 1.89 1.95
4 – – 1.23 1.3 4 – – 1.48 1.64
5 – – – 1.1 5 – – – 1.4

0.75

0.25 3.45 3.61 3.68 3.7

1

0.25 3.44 3.61 3.68 3.7
0.5 3.45 3.61 3.68 3.7 0.5 3.44 3.61 3.68 3.7
0.75 3.45 3.61 3.68 3.7 0.75 3.45 3.61 3.68 3.71
1 3.45 3.61 3.68 3.7 1 3.45 3.61 3.68 3.7
1.5 – 3.04 3.18 3.22 1.5 – 3.23 3.44 3.5
2 – 2.55 2.75 2.81 2 – 2.78 3.04 3.12
3 – – 2.2 2.28 3 – – 2.5 2.62
4 – – 1.74 1.96 4 – – 2.03 2.27
5 – – – 1.74 5 – – – 1.97

1.25

0.25 3.45 3.61 3.68 3.67

1.5

0.25 3.44 3.61 3.68 3.7
0.5 3.44 3.61 3.68 3.67 0.5 3.44 3.61 3.68 3.7
0.75 3.44 3.61 3.68 3.67 0.75 3.44 3.61 3.68 3.7
1 3.45 3.61 3.68 3.7 1 3.45 3.62 3.68 3.7
1.5 – 3.47 3.68 3.71 1.5 – 3.61 3.68 3.7
2 – 2.95 3.3 3.38 2 – 3.13 3.59 3.68
3 – – 2.76 2.91 3 – – 3.06 3.24
4 – – 2.18 2.54 4 – – 2.33 2.86
5 – – – 2.22 5 – – – 2.53
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Figure 9: Design chart of Bearing capacity coeflcient at ϕ2 =
40∘ , δ2 = ϕ2/2, i = 150, δ1/δ2 = 0.8, kv = kh/2, 𝛾𝛾1/𝛾𝛾2 =
0.8, Df /B0 = 1, h1/B0 = 0.25, 2c2/B0𝛾𝛾2 = 0.2, c1/c2 = 0.8

Ranges of various parameters are given as follows:
ϕ1
ϕ2

= 0.6, 0.8, 1𝛾𝛾1
𝛾𝛾2

= 0.6, 0.8, 1 h1
B0

= 0.1, 0.25, 0.5

i = 100, 150, 200, 250kv = 0, kh/2, kh
δ1
δ2 is the ratio of wall friction angles between the top and
bottom layers.

Since the heuristic algorithms give us low ramification
and high execution and these methods are relatively new,
they can be applied in the geotechnical problem. Out of
these methods, a brief discussion on PSO is given here as
it is used in the analysis.

3.2 Particle swarm optimisation

Kennedy and Eberhart (1995) developed PSO as a simu-
lation of birds swarm. A swarm is a group of individuals
with defined rules for individual behaviours and commu-
nication. The ability of each individual to deal with the
previous experiences of the swarm is called swarm intel-
ligence. This capability guides the swarm towards its op-
timum goal. PSO is a population-based search technique
where a population of particles start their journey in a
space concerning the current best position (Hossain and
EI-Shafie 2014; Hajihassani et al.2017). Reynolds (1987) de-
scribed three simple rules for the behaviours of individ-
uals inside a swarm, which were used as one of the ba-

Figure 10: Flowchart of PSO algorithm.

sic concepts of PSO by Kennedy and Eberhart (1995). Al-
though these simple rules model the behaviour of individ-
uals, their combination produces a complicated behaviour
for the swarm.

1. Individuals avoid collision with others
2. Individuals go towards the goal of the swarm
3. Individuals go to the centre of the swarm

The process of decision-making related to individuals
is another basic concept of PSO. Each individual of the
swarmmakes decisionbased on the following two factors:

1. Own experiences of the individual that is its bestre-
sults so far

2. The experiences of other individuals in the swarm
that is the best results in the whole swarm

Figure 10 illustrates the standard flowchart of PSO.
At the starting step of the original PSO, a certain num-
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Figure 11: Schematic structure of a particle in PSO (Kalatehjari
2013).

ber of individuals, called particles, are distributed in the
search space by using a random pattern (Kennedy and
Eberhart 1995; Cheng et al. 2007; Aote et al. 2013). Each
particle is representative of a feasible solution. Figure 11
shows the schematic structure of a particle in PSO in-
volving three divided parts as its current position, best
position and velocity. The current position, best posi-
tion and velocity of particles record the current coordi-
nates, best coordinates and velocity vectors of a parti-
cle in D-dimensional space,respectively, where D starts
from 1 (Kalatehjari 2013). Consequently, for a particle in
D-dimensional space, a 3D-dimensional particle is desir-
able. PSO aims to meet the termination criteria which are
defined as the criteria for terminating the iterative search
process. To select an appropriate termination criterion, it
should be noted that the termination condition does not
cause a premature converge and it should protect against
oversampling of the fitness (Engelbrecht 2007). The fol-
lowing termination criteria are frequently used in PSO:

1. Termination when the maximum number ofitera-
tions is exceeded

2. Termination when a satisfactory solution isfound
based on the condition of each problem

3. Termination when no improvement is achievedover
a certain number of iterations

These criteria are applied to ensure that PSO can con-
verge on a feasible solution. Although PSO has some lim-
itation which is explained by Gbenga et al. (2016) and
Aote et al. (2013), PSO tries to make the objective func-
tion as a minimum or maximum dependingon the prob-
lem to be solved. To lead the swarm towards this aim, the
fitness value of each particle is determined by evaluating
its current position by the objective function. After evalua-
tion offitness of all particles, Equation 39 (velocity equa-
tion) is used to calculate the velocity of particles based
on their best position and the position of the best parti-
cle in the swarm.Using Equation 40, particle positions can
be updated according to their current positions and veloc-
ities. This iterative process continues until reaching the

termination criteria. Equations 39 and 40 are as follows
(Kennedy and Eberhart 1995):

vn(i) = vn(i−1) + u (0, ϑ1)
(︀
bpn(i) − Xn(i)

)︀
+

+ u (0, ϑ2)
(︀
bgn(i) − Xn(i)

)︀ (39)

Xn(i+1) = Xn(i) + vn(i) (40)

where v is the velocity of an nth particle in the past it-
eration and v(n−1) is the velocity of the nth particle in the
current iteration. The vectors of random numbers ofan nth

particle are presented by u(0, ϑ1) and u(0, ϑ2), bpn(i) is the
best position of the nth particle so far, bgn(i) is the position
of the best particle of the swarm so far, and Xn(i−1) and Xn(i)
are the positions of the nth particle in the current and next
iterations,respectively. Input parameters are taken for op-
timisation as follows:

Input h1/B0, ϕ2, ϕ1/ϕ2, δ2, δ1/δ2, 2c̄/𝛾̄𝛾B0,
kh , kv , ξ , αA1 = 200 − 800αA2 = 300 − 80∘

αp1 = 300 − 800αp2 = 300 − 600

3.3 Parametric study

3.3.1 Weak soil layer over strong soil layer

Aparametric study was done for the variation of pseudo-
static seismic bearing capacity coefficients with different
soil parameters as shown in Figs 12–18.

3.3.2 Variations of seismic bearing capacity coeflcient
for different values of slope angle (i) using PSO
algorithm

Figure 12 shows the variation of seismic bearing capac-
ity coefficient

(︀
N𝛾𝛾E

)︀
at ϕ2 = 300, δ2 = ϕ2

2 ,
ϕ1
ϕ2

= 0.8,
δ1
δ2 = 0.8,kv = kh

2 ,
𝛾𝛾1
𝛾𝛾2

= 0.8, Df
B0

= 0.5, h1
B0

= 0.5, 2c2
𝛾𝛾2B0

= 0.2
and c1

c2 = 0.8 with kh. From the plot, it is seen that N𝛾𝛾E de-
creases with the increase of angle of inclination (i). As the
slope angle is increased, the area of the slope is decreased;
therefore, the failure zone is decreased, resulting in much
smaller bearing capacity.

3.3.3 Variations of seismic bearing capacity coeflcient
for different values of ϕ1

ϕ2
using PSO algorithm

Figure 13 depicts the variations of seismic bearing capacity
coefficient

(︀
N𝛾𝛾E

)︀
at ϕ2 = 300, δ2 = ϕ2

2 , i = 150, δ1
δ2 = 0.8,
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Figure 12: Variation of N𝛾𝛾E with kh for ϕ2 = 30∘ , δ2 = ϕ2/2,
ϕ1/ϕ2 = 0.8, δ1/δ2 = 0.8, kv = kh/2, 𝛾𝛾1/𝛾𝛾2 = 0.8, Df /B0 =
0.5, h1/B0 = 0.25, 2c2/B0𝛾𝛾2 = 0.2, c1/c2 = 0.8.

kv = kh
2 ,

𝛾𝛾1
𝛾𝛾2

= 0.8, Df
B0

= 0.5, Df
B0

= 0.5, 2c2
𝛾𝛾2B0

= 0.2 and
c1
c2 = 0.80 with kh. From the plot, it is seen that N𝛾𝛾E in-
creases with an increase in the value of ϕ1

ϕ2
. An increase in

ϕ1
ϕ2

ratio increases the strength of the soil (or internal re-
sistance of the soil) against the shearing resistance, which
results in increasing the bearing capacity. Here, ϕ1 value
is increased while keeping the ϕ2 value constant.

3.3.4 Variations of seismic bearing capacity coeflcient
for different values of 𝛾𝛾1

𝛾𝛾2
using PSO algorithm

Figure 14 shows the variations of seismic bearing capacity
coefficient

(︀
N𝛾𝛾E

)︀
at ϕ2 = 300, δ2 = ϕ2

2 , i = 150, δ1
δ2 =

0.8,kv = kh
2 ,

ϕ1
ϕ2

= 0.8, h1B0
= 0.25, Df

B0
= 0.5, 2c2

𝛾𝛾2B0
= 0 and

c1
c2 = 0 with kh. From the plot, it is seen that coefficient
N𝛾𝛾E increases with an increase in the value of 𝛾𝛾1

𝛾𝛾2
. Here,

the ratio 𝛾𝛾1
𝛾𝛾2

is increased while keeping 𝛾𝛾2 as a constant.

3.3.5 Variations of seismic bearing capacity coeflcient
for different values of h1

B0
using PSO algorithm

Figure 15 shows the variations of seismic bearing capac-
ity coefficient

(︀
N𝛾𝛾E

)︀
at ϕ2 = 300, δ2 = ϕ2

2 ,i = 150, δ1
δ2 =

0.8,kv = kh
2 ,

ϕ1
ϕ2

= 0.8, 𝛾𝛾1
𝛾𝛾2

= 0.80, Df
B0

= 0.5, 2c2
𝛾𝛾2B0

= 0.2
and c1

c2 = 0.8 with kh. From the plot, it is seen that N𝛾𝛾E de-
creases with an increase in the value of h1

B0
. h1 is the depth

Figure 13: Variation of N𝛾𝛾E with kh for ϕ2 = 30∘ , δ2 = ϕ2/2, i =
150, δ1/δ2 = 0.8, kv = kh/2, 𝛾𝛾1/𝛾𝛾2 = 0.8, Df /B0 = 0.5, h1/B0 =
0.25, 2c2/B0𝛾𝛾2 = 0.2, c1c2 = 0.8.

of the top layer and it is considered in the analysis that it is
weaker than the bottom layer. So, a weaker layer will pro-
vide less resistance, and hence increase in the thickness
of this layer decreases the value of bearing capacity coeffi-
cients.

3.3.6 Variations of seismic bearing capacity coeflcient
for different values of δ1

δ2 using PSO algorithm

Figure 16 shows the variation of seismic bearing capacity
coefficient

(︀
N𝛾𝛾E

)︀
at ϕ2 = 300, δ2 = ϕ2

2 , i = 150, h1
B0

= 0.25,
kv = kh

2 ,
ϕ1
ϕ2

= 0.8, 𝛾𝛾1
𝛾𝛾2

= 0.80, Df
B0

= 0.5, 2c2
𝛾𝛾2B0

= 0.2 and
c1
c2 = 0.8 with kh. From the plot, it is seen that coefficient
N𝛾𝛾E increases with an increase in the value of δ1

δ2 .

3.3.7 Variations of seismic bearing capacity coeflcient
for different values of kv using PSO algorithm

Figure 17 shows the variation of N𝛾𝛾E at ϕ2 = 300, δ2 = ϕ2
2 ,

i = 150, h1
B0

= 0.25, c1
c2 = 0.80, ϕ1

ϕ2
= 0.8, 𝛾𝛾1

𝛾𝛾2
= 0.80,

Df
B0

= 0.5, 2c2
𝛾𝛾2B0

= 0.2 and δ1
δ2 = 0.8 with kh. From the plot,

it is seen that N𝛾𝛾E decreaseswith an increase in kv. It is ob-
vious because increase in the value of kv increases the dis-
turbance of base soil and this decreases the value of N𝛾𝛾E.
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Figure 12: Variation of N𝛾𝛾E with kh for ϕ2 = 30∘ , δ2 = ϕ2/2,
ϕ1/ϕ2 = 0.8, δ1/δ2 = 0.8, kv = kh/2, 𝛾𝛾1/𝛾𝛾2 = 0.8, Df /B0 =
0.5, h1/B0 = 0.25, 2c2/B0𝛾𝛾2 = 0.2, c1/c2 = 0.8.

kv = kh
2 ,

𝛾𝛾1
𝛾𝛾2

= 0.8, Df
B0

= 0.5, Df
B0

= 0.5, 2c2
𝛾𝛾2B0

= 0.2 and
c1
c2 = 0.80 with kh. From the plot, it is seen that N𝛾𝛾E in-
creases with an increase in the value of ϕ1

ϕ2
. An increase in

ϕ1
ϕ2

ratio increases the strength of the soil (or internal re-
sistance of the soil) against the shearing resistance, which
results in increasing the bearing capacity. Here, ϕ1 value
is increased while keeping the ϕ2 value constant.

3.3.4 Variations of seismic bearing capacity coeflcient
for different values of 𝛾𝛾1

𝛾𝛾2
using PSO algorithm

Figure 14 shows the variations of seismic bearing capacity
coefficient

(︀
N𝛾𝛾E

)︀
at ϕ2 = 300, δ2 = ϕ2

2 , i = 150, δ1
δ2 =

0.8,kv = kh
2 ,

ϕ1
ϕ2

= 0.8, h1B0
= 0.25, Df

B0
= 0.5, 2c2

𝛾𝛾2B0
= 0 and

c1
c2 = 0 with kh. From the plot, it is seen that coefficient
N𝛾𝛾E increases with an increase in the value of 𝛾𝛾1

𝛾𝛾2
. Here,

the ratio 𝛾𝛾1
𝛾𝛾2

is increased while keeping 𝛾𝛾2 as a constant.

3.3.5 Variations of seismic bearing capacity coeflcient
for different values of h1

B0
using PSO algorithm

Figure 15 shows the variations of seismic bearing capac-
ity coefficient

(︀
N𝛾𝛾E

)︀
at ϕ2 = 300, δ2 = ϕ2

2 ,i = 150, δ1
δ2 =

0.8,kv = kh
2 ,

ϕ1
ϕ2

= 0.8, 𝛾𝛾1
𝛾𝛾2

= 0.80, Df
B0

= 0.5, 2c2
𝛾𝛾2B0

= 0.2
and c1

c2 = 0.8 with kh. From the plot, it is seen that N𝛾𝛾E de-
creases with an increase in the value of h1

B0
. h1 is the depth

Figure 13: Variation of N𝛾𝛾E with kh for ϕ2 = 30∘ , δ2 = ϕ2/2, i =
150, δ1/δ2 = 0.8, kv = kh/2, 𝛾𝛾1/𝛾𝛾2 = 0.8, Df /B0 = 0.5, h1/B0 =
0.25, 2c2/B0𝛾𝛾2 = 0.2, c1c2 = 0.8.

of the top layer and it is considered in the analysis that it is
weaker than the bottom layer. So, a weaker layer will pro-
vide less resistance, and hence increase in the thickness
of this layer decreases the value of bearing capacity coeffi-
cients.

3.3.6 Variations of seismic bearing capacity coeflcient
for different values of δ1

δ2 using PSO algorithm

Figure 16 shows the variation of seismic bearing capacity
coefficient

(︀
N𝛾𝛾E

)︀
at ϕ2 = 300, δ2 = ϕ2

2 , i = 150, h1
B0

= 0.25,
kv = kh

2 ,
ϕ1
ϕ2

= 0.8, 𝛾𝛾1
𝛾𝛾2

= 0.80, Df
B0

= 0.5, 2c2
𝛾𝛾2B0

= 0.2 and
c1
c2 = 0.8 with kh. From the plot, it is seen that coefficient
N𝛾𝛾E increases with an increase in the value of δ1

δ2 .

3.3.7 Variations of seismic bearing capacity coeflcient
for different values of kv using PSO algorithm

Figure 17 shows the variation of N𝛾𝛾E at ϕ2 = 300, δ2 = ϕ2
2 ,

i = 150, h1
B0

= 0.25, c1
c2 = 0.80, ϕ1

ϕ2
= 0.8, 𝛾𝛾1

𝛾𝛾2
= 0.80,

Df
B0

= 0.5, 2c2
𝛾𝛾2B0

= 0.2 and δ1
δ2 = 0.8 with kh. From the plot,

it is seen that N𝛾𝛾E decreaseswith an increase in kv. It is ob-
vious because increase in the value of kv increases the dis-
turbance of base soil and this decreases the value of N𝛾𝛾E.
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Figure 14: Variation of N𝛾𝛾E with kh for ϕ2 = 300, δ2 = ϕ2/2, i =
150, δ1/δ2 = 0.8, kV = kh/2, ϕ1/ϕ2 = 0.8, Df /B0 = 0.5, h1/B0 =
0.25, 2c2/B0𝛾𝛾2 = 0.2, c1/c2 = 0.8.

3.3.8 Variations of seismic bearing capacity coeflcient
for different values of c1

c2 using PSO algorithm

Figure 18 shows the variation of N𝛾𝛾Eatϕ2 = 300, δ2 = ϕ2
2 ,

i = 150, h1
B0

= 0.25,kv = kh
2 ,

ϕ1
ϕ2

= 0.8, 𝛾𝛾1
𝛾𝛾2

= 0.80, Df
B0

=
0.5, 2c2

𝛾𝛾2B0
= 0.2 and δ1

δ2 = 0.8 with kh. From the plot, it is
seen that the coefficient N𝛾𝛾E increases with an increase in
the value of c1

c2 . By increasing the
c1
c2 ratio, intermolecular

attractionamong the soil particles increases,which results
in an increase in the bearing capacity.

3.3.9 Strong soil layer over weak soil layer

3.3.10 Variations of seismic bearing capacity coeflcient
for different values of using ϕ1

ϕ2
PSO algorithm

Figure 19 depicts the variations of seismic bearing capac-
ity coefficient

(︀
N𝛾𝛾E

)︀
at ϕ2 = 200, δ2 = ϕ2

2 ,
h1
B0

= 0.25,
δ1
δ2 = 1.1, kv = kh

2 ,
𝛾𝛾1
𝛾𝛾2

= 1.1, Df
B0

= 0.5, 2c2
𝛾𝛾2B0

= 0 and c1
c2 = 0

with kh. From the figure, it is seen that the coefficient N𝛾𝛾E
increases with an increase in the value of ϕ1

ϕ2
. As the up-

per layer is considered a strong layer for this parameter,
increasing the internal soil friction bearing capacity will
be increased. Here, the ϕ1 value is increased, keeping the
ϕ2 value constant.

Figure 15: Variation of N𝛾𝛾E with kh for ϕ2 = 30∘ , δ2 = ϕ2/2, i =
15, δ1/δ2 = 0.8, kv = kh/2, ϕ1/ϕ2 = 0.8, Df /B0 = 0.5, 𝛾𝛾1/𝛾𝛾2 =
0.80, 2c2/B0𝛾𝛾2 = 0.2, c1/c2 = 0.8.

Figure 16: Variation of N𝛾𝛾E with kh for ϕ2 = 30∘ , δ2 = ϕ2/2 i =
150, c2/c2 = 0.8, kV = kh/2, ϕ1/ϕ2 = 0.8, Df /B0 = 0.5, h1/B0 =
0.25, 𝛾𝛾1/𝛾𝛾2 = 0.8.
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Figure 14: Variation of N𝛾𝛾E with kh for ϕ2 = 300, δ2 = ϕ2/2, i =
150, δ1/δ2 = 0.8, kV = kh/2, ϕ1/ϕ2 = 0.8, Df /B0 = 0.5, h1/B0 =
0.25, 2c2/B0𝛾𝛾2 = 0.2, c1/c2 = 0.8.

3.3.8 Variations of seismic bearing capacity coeflcient
for different values of c1

c2 using PSO algorithm

Figure 18 shows the variation of N𝛾𝛾Eatϕ2 = 300, δ2 = ϕ2
2 ,

i = 150, h1
B0

= 0.25,kv = kh
2 ,

ϕ1
ϕ2

= 0.8, 𝛾𝛾1
𝛾𝛾2

= 0.80, Df
B0

=
0.5, 2c2

𝛾𝛾2B0
= 0.2 and δ1

δ2 = 0.8 with kh. From the plot, it is
seen that the coefficient N𝛾𝛾E increases with an increase in
the value of c1

c2 . By increasing the
c1
c2 ratio, intermolecular

attractionamong the soil particles increases,which results
in an increase in the bearing capacity.

3.3.9 Strong soil layer over weak soil layer

3.3.10 Variations of seismic bearing capacity coeflcient
for different values of using ϕ1

ϕ2
PSO algorithm

Figure 19 depicts the variations of seismic bearing capac-
ity coefficient

(︀
N𝛾𝛾E

)︀
at ϕ2 = 200, δ2 = ϕ2

2 ,
h1
B0

= 0.25,
δ1
δ2 = 1.1, kv = kh

2 ,
𝛾𝛾1
𝛾𝛾2

= 1.1, Df
B0

= 0.5, 2c2
𝛾𝛾2B0

= 0 and c1
c2 = 0

with kh. From the figure, it is seen that the coefficient N𝛾𝛾E
increases with an increase in the value of ϕ1

ϕ2
. As the up-

per layer is considered a strong layer for this parameter,
increasing the internal soil friction bearing capacity will
be increased. Here, the ϕ1 value is increased, keeping the
ϕ2 value constant.

Figure 15: Variation of N𝛾𝛾E with kh for ϕ2 = 30∘ , δ2 = ϕ2/2, i =
15, δ1/δ2 = 0.8, kv = kh/2, ϕ1/ϕ2 = 0.8, Df /B0 = 0.5, 𝛾𝛾1/𝛾𝛾2 =
0.80, 2c2/B0𝛾𝛾2 = 0.2, c1/c2 = 0.8.

Figure 16: Variation of N𝛾𝛾E with kh for ϕ2 = 30∘ , δ2 = ϕ2/2 i =
150, c2/c2 = 0.8, kV = kh/2, ϕ1/ϕ2 = 0.8, Df /B0 = 0.5, h1/B0 =
0.25, 𝛾𝛾1/𝛾𝛾2 = 0.8.
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Figure 17: Variation of N𝛾𝛾E with kh for ϕ2 = 30, δ2 = ϕ2/2, Df /B0 =
0.5 i = 20∘ , h1/B0 = 0.25, 𝛾𝛾1/𝛾𝛾2 = 0.8, δ1/δ2 = 0.8, ϕ1/ϕ2 =
0.8, 2c2/B0𝛾𝛾2 = 0, c1/c2 = 0.

Figure 18: Variation of N𝛾𝛾E with kh for ϕ2 = 30∘ , δ2 = ϕ2/2 i =
150, δ1/δ2 = 0.8, kV = kh/2, ϕ1/ϕ2 = 0.8, Df /B0 = 0.5, h1/B0 =
0.25, 𝛾𝛾1/𝛾𝛾2 = 0.8.

Figure 19: Variation of N𝛾𝛾E with kh for ϕ2 = 20∘ , δ2 = ϕ2/2, i = 20∘
δ1/δ2 = 1.1, kv = kh/2, 𝛾𝛾1/𝛾𝛾2 = 1.1, Df /B0 = 0.50, 2c2/B0𝛾𝛾2 =
0, c1/c2 = 0.

3.3.11 Variations of seismic bearing capacity coeflcient
for different values of using 𝛾𝛾1

𝛾𝛾2
PSO algorithm

Figure 20 shows the variations of seismic bearing capacity
coefficient

(︀
N𝛾𝛾E

)︀
at ϕ2 = 300, δ2 = ϕ2

2 ,
h1
B0

= 0.25, δ1
δ2 =

1.1, kv = kh
2 ,

ϕ1
ϕ2

= 1.1, Df
B0

= 0.5, 2c2
𝛾𝛾2B0

= 0 and c1
c2 = 0

with kh. From the figure, it is seen that the coefficient N𝛾𝛾E
increases with an increase in the value of 𝛾𝛾1

𝛾𝛾2
. The ratio 𝛾𝛾1

𝛾𝛾2

is increased keeping 𝛾𝛾2 as a constant. Here, 𝛾𝛾1 is the unit
weight of the strong soil layer and 𝛾𝛾2 is the unit weight of
the weak soil layer.

3.3.12 Variations of seismic bearing capacity coeflcient
for different values of c1

c2 using PSO algorithm

Figure 21 shows the variations of
(︀
N𝛾𝛾E

)︀
at ϕ2 = 300,δ2 =

ϕ2
2 ,

h1
B0

= 0.25, δ1
δ2 = 1.1, kv = kh

2 ,
𝛾𝛾1
𝛾𝛾2

= 1.1, Df
B0

= 0.5,
2c2
𝛾𝛾2B0

= 0.2, ϕ1
ϕ2

= 0 with kh. From the plot, it is seen that
the coefficientN𝛾𝛾E increaseswith an increase in the values
of c1

c2 . Here, c2 is the cohesive force on the weak soil layer
and c1 is the cohesive force on the strong soil layer. Hence,
the ratio c1

c2 is increased while keeping c2 constant. So, the
value N𝛾𝛾E will increase.
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Table 3: Comparison of variation of seismic bearing capacity (quE) KN/m2 with 𝛾𝛾 (KN/m3) for the case of ϕ = 30∘ , c = 9.8KN/m2, i =
20∘ , B0 = 10m.

Sawada et al. (1994) Askari and Farzaneh (2003) Yamamoto (2010) Present Analysis
kh 𝛾𝛾=9.8 𝛾𝛾=19.8 𝛾𝛾=9.8 𝛾𝛾=19.8 𝛾𝛾=9.8 𝛾𝛾=19.8 𝛾𝛾=9.8 𝛾𝛾=19.8

0.1 1798 3321 1066 1856 1013 1795 1614.14 3139.92
0.2 1770 3269 829 1307 755 1283 654 1167

Table 4: Comparison of the variation in Ncs with different cu/𝛾𝛾B0, Df/B0, c1/c2 for i=30∘.

cu/𝛾𝛾B0
Ncs (Present study) Ncs (Wu et al. 2020)

Df/B0=0.5,
c1/c2=0.5

Df/B0=1.5,
c1/c2=0.5

Df/B0=1.5,
c1/c2=1.5

Df/B0=0.5,
c1/c2=1.5

Df/B0=0.5,
c1/c2=0.5

Df/B0=1.5,
c1/c2=0.5

Df/B0=1.5,
c1/c2=1.5

Df/B0=0.5,
c1/c2=1.5

1 4.06 3.78 2.78 2.34 4.05 3.79 2.8 2.34
2 4.15 3.92 3.05 2.95 4.16 3.96 3.01 3.01
4 4.20 4.02 3.11 3.04 4.19 4.02 3.12 3.12
6 4.22 4.04 3.22 3.10 4.2 4.04 3.15 3.15
8 4.24 4.06 3.23 3.14 4.21 4.05 3.17 3.17
10 4.25 4.08 3.24 3.16 4.22 4.6 3.17 3.17

Figure 20: Variation of N𝛾𝛾E with kh for ϕ2 = 30∘ , i = 20∘ , δ2 =
ϕ2/2, h1/B0 = 0.25,δ1/δ2 = 1.1, kv = kh/2, ϕ1/ϕ2 = 1.1, D/B0 =
0.50, 2c2/B0𝛾𝛾2 = 0, c1/c2 = 0.

Figure 21: Variation of N𝛾𝛾E with kh for ϕ2 = 30∘ , i = 20∘ , δ2 =
ϕ2/2, h1/B0 = 0.25, δ1/δ2 = 1.1, kv = kh/2, ϕ1/ϕ2 = 1.1, D/B0 =
0.50, 𝛾𝛾1/𝛾𝛾2 = 1.1.
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Figure 22: Comparison of variation in static bearing capacity coefl-
cients (NCS) with c1/c2 for i = 300.

Figure 23: Comparison of seismic bearing capacity coeflcients (NcE)
with kh for Df/B0 = 0, i = 30∘ , c1/c2 = 1.

4 Comparisons
Thebearing capacity coefficient

(︀
N𝛾𝛾′′

)︀
has been computed

by using a computer programing software ‘MATLAB’ code.
PSO algorithm is applied, which can calculate the ulti-
mate bearing capacity, qult, for various combinations of
soil properties in each layer. Table 3 shows a comparison
of the ultimate bearing capacity for Df /B0 = 0.25 be-
tween Askari and Farzaneh (2003), Sawada et al. (1994),
Yamamoto (2010) and the present analysis,demonstrating
the potentiality of the present analysis. It is found that
the solutions from Sawada et al. (1994) have high values
with the increase of 𝛾𝛾, compared with those from Askari
and Farzaneh (2003), Yamamoto (2010) and the present

analysis. This fact depends on the assumed failure mech-
anism. For the case of 𝛾𝛾 = 9.8, 19.8, the solutions from
the present analysis tend to have lower values than those
from Askari and Farzaneh (2003). The proposed solutions
of the footing at two-layered slope with different cu/𝛾𝛾B0,
Df/B0 and c1/c2 are compared with the results of Wu et
al. (2020), as shown in Table 4. These results are com-
pared for bearing capacity coefficient (Ncs). The undrained
seismic bearing capacity coefficients can be written as:
Ncs=qult/c1=f (cu/𝛾𝛾B0, Df /B0, c1/c2, i, kh). qult is the ul-
timate bearing capacity of the strip footing. The cases of
footings lying on two-layered level ground with the seis-
mic action are compared with the results of Jahani et al.
(2019), and the comparison is presented in Table 5. It is
observed from Table 5 that the results of the present study
agree well with those of previous studies. Consequently,
Tables 6–8display comparisons of the variation inNcswith
Xiao et al. (2019) for different slope angles i=150, 300 and
450. The undrained static bearing capacity factors for co-
hesion (Ncs) obtained in the present study for a footing of
uniform slope were compared with the UB and LB solu-
tions of Xiao et al. (2019), semi-empirical results reported
by Vesic (1975), the upper bound (UB) solutions obtained
from Kusakabe et al. (1981), the limit-equilibrium meth-
ods of Narita and Yamaguchi (1990) and the finite ele-
ment results provided by Georgiadis (2010). Comparison
of these results is shown in Fig. 22 for the case of slope an-
gle (i)=300. In Fig. 22, it is observed that the values of Ncs

obtained from the UB solutions of Kusakabe et al. (1981)
and Georgiadis (2010) lie between the UB and LB solu-
tions of Xiao et al. (2019). The semi-empirical solutions of
Vesic (1975) give the lowest values, whereas the values re-
ported by Narita and Yamaguchi (1990) are found to be the
highest dimensionless bearing capacity coefficients. From
this figure, it is also observed that the values obtained in
the present study are closer to the UB solutions obtained
by Xiao et al. (2019) and Narita and Yamaguchi (1990).
The present values lie between these two researches’ val-
ues. To verify the reliability of the present model, the LB
and UB results were compared with the present limit equi-
librium method. The present model of Df /B0 = 0, i =
300 andc1/c2 = 1 with different seismic coefficients kh
were compared with the previous LB and UB results (Wu
et al. 2020), FEM results (Cinicioglu and Erkli 2018) and
FELA results (Keshavarz et al. 2019). It can be seen in Fig.
23 that the present seismic bearing capacity coefficients
(NcE) closely match with the Upper bound (UB) limit anal-
ysis values.Based on the comparisons mentioned above,
the proposed model can be proved with relatively minor
error.
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Table 5: Comparison of the variation in Ncs with different kh and c1/c2 for i=0∘ and Df/B0.

Ncs (Present study) Ncs (Jahani et al. 2019)

kh c1/c2=0.25 c1/c2=0.50 c1/c2=0.75 c1/c2=0.25 c1/c2=0.50 c1/c2=0.75

0 5.62 3.94 3.06 5.67 4 3.1
0.1 5.20 3.48 2.75 5.25 3.58 2.73
0.2 4.04 3.04 2.37 4.44 3.12 2.4
0.3 3.38 2.65 2.12 3.47 2.7 2.15

Table 6: Comparison of the variation in Ncs for i=15∘.

h1/B0 Df/B0 c1/c2
Xiao et al. (2019) Present study

c1/𝛾𝛾B0 c1/𝛾𝛾B0
1 2 4 6 1 2 4 6

0.5

0.25

0.25 5.71 5.73 5.74 5.74 5.68 5.70 5.71 5.72
0.5 5.71 5.73 5.74 5.74 5.68 5.70 5.71 5.72
0.75 5.53 5.57 5.58 5.59 5.49 5.55 5.56 5.57
1 4.51 4.58 4.61 4.63 4.49 4.53 4.58 4.60

0.50

0.25 4.70 4.75 4.77 4.77 4.68 4.71 4.74 4.74
0.5 4.70 4.75 4.77 4.77 4.68 4.72 4.75 4.75
0.75 4.70 4.74 4.77 4.77 4.68 4.71 4.75 4.75
1 4.51 4.57 4.61 4.62 4.45 4.51 4.59 4.59

1

0.25

0.25 5.71 5.73 5.73 5.75 5.68 5.70 5.71 5.72
0.5 5.71 5.73 5.73 5.74 5.68 5.70 5.70 5.71
0.75 5.52 5.57 5.58 5.59 5.50 5.55 5.56 5.57
1 4.51 4.58 4.61 4.63 4.48 4.55 4.59 4.61

0.50

0.25 4.70 4.75 4.77 4.78 4.68 4.72 4.74 4.75
0.5 4.71 4.75 4.77 4.78 4.67 4.74 4.75 4.76
0.75 4.70 4.75 4.77 4.78 4.66 4.74 4.74 4.75
1 4.51 4.58 4.62 4.62 4.49 4.55 4.60 4.61

2

0.25

0.25 5.71 5.73 5.74 5.73 5.69 5.72 5.72 5.73
0.5 5.71 5.73 5.74 5.74 5.69 5.71 5.72 5.73
0.75 5.52 5.57 5.58 5.59 5.50 5.55 5.56 5.57
1 4.51 4.58 4.62 4.63 5.49 5.53 5.54 5.55

0.50

0.25 4.70 4.74 4.77 4.79 4.69 4.72 4.75 4.77
0.5 4.70 4.76 4.77 4.77 4.68 4.70 4.73 4.75
0.75 4.70 4.74 4.76 4.78 4.67 4.68 4.70 4.72
1 4.51 4.58 4.61 4.62 4.47 4.54 4.59 4.60

3

0.25

0.25 5.70 5.73 5.74 5.74 5.69 5.71 5.72 5.72
0.5 5.70 5.73 5.74 5.74 5.69 5.71 5.72 5.72
0.75 5.52 5.56 5.58 5.58 5.50 5.55 5.56 5.57
1 4.51 4.58 4.61 4.62 4.48 4.55 4.58 4.60

0.50

0.25 4.71 4.75 4.77 4.78 4.69 4.72 4.74 4.77
0.5 4.70 4.75 4.77 4.78 4.68 4.72 4.74 4.77
0.75 4.70 4.75 4.77 4.77 4.67 4.71 4.73 4.73
1 4.51 4.58 4.61 4.63 4.49 4.55 4.59 4.60
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Table 7: Comparison of the variation in Ncs for i=30∘.

h1/B0 Df/B0 c1/c2
Xiao et al. (2019) Present study

c1/𝛾𝛾B0 c1/𝛾𝛾B0
1 2 4 6 1 2 4 6

0.5

0.25

0.25 5.15 5.20 5.23 5.23 5.11 5.16 5.21 5.21
0.5 5.15 5.20 5.22 5.23 5.11 5.16 5.21 5.20
0.75 4.86 4.95 5.00 5.01 4.81 4.88 4.91 4.96
1 3.88 4.01 4.07 4.09 3.82 4.01 4.03 4.05

0.50

0.25 4.09 4.18 4.23 4.24 4.05 4.16 4.20 4.21
0.5 4.09 4.18 4.23 4.24 4.02 4.14 4.18 4.20
0.75 4.09 4.18 4.23 4.24 4.01 4.12 4.16 4.18
1 3.88 4.00 4.07 4.09 3.84 3.95 4.02 4.05

1

0.25

0.25 5.15 5.20 5.22 5.23 5.10 5.15 5.20 5.21
0.5 5.15 5.20 5.22 5.23 5.09 5.13 5.19 5.20
0.75 4.85 4.95 5.00 5.01 4.80 4.85 4.90 4.93
1 3.83 3.99 4.06 4.08 3.80 3.92 3.99 4.01

0.50

0.25 4.10 4.19 4.24 4.25 4.07 4.11 4.20 4.22
0.5 4.10 4.19 4.23 4.25 4.05 4.10 4.19 4.20
0.75 4.10 4.19 4.23 4.25 4.04 4.10 4.18 4.19
1 3.83 3.99 4.06 4.08 3.80 3.95 4.04 4.06

2

0.25

0.25 5.15 5.20 5.22 5.23 5.11 5.17 5.20 5.21
0.5 5.15 5.20 5.22 5.23 5.10 5.17 5.20 5.21
0.75 4.85 4.95 5.00 5.01 4.82 4.90 4.96 4.99
1 3.83 3.99 4.06 4.08 3.81 3.95 4.01 4.04

0.50

0.25 4.09 4.19 4.23 4.25 4.07 4.15 4.20 4.22
0.5 4.09 4.19 4.23 4.25 4.05 4.14 4.20 4.21
0.75 4.09 4.19 4.23 4.25 4.05 4.14 4.20 4.21
1 3.82 3.98 4.05 4.07 3.80 3.94 4.01 4.04

3

0.25

0.25 5.16 5.20 5.22 5.23 5.11 5.18 5.20 5.21
0.5 5.16 5.20 5.22 5.23 5.11 5.17 5.20 5.21
0.75 4.85 4.95 5.00 5.01 4.81 4.92 4.99 5.00
1 3.83 3.99 4.06 4.08 3.80 3.96 4.03 4.06

0.50

0.25 4.10 4.19 4.23 4.25 4.07 4.15 4.20 4.23
0.5 4.09 4.19 4.23 4.24 4.06 4.14 4.20 4.22
0.75 4.10 4.19 4.23 4.24 4.05 4.12 4.18 4.20
1 3.83 3.99 4.06 4.08 3.80 3.93 4.03 4.06



Seismic bearing capacity of shallow strip footing embedded in slope resting on two-layered soil    30116 | Litan Debnath

Table 5: Comparison of the variation in Ncs with different kh and c1/c2 for i=0∘ and Df/B0.

Ncs (Present study) Ncs (Jahani et al. 2019)

kh c1/c2=0.25 c1/c2=0.50 c1/c2=0.75 c1/c2=0.25 c1/c2=0.50 c1/c2=0.75

0 5.62 3.94 3.06 5.67 4 3.1
0.1 5.20 3.48 2.75 5.25 3.58 2.73
0.2 4.04 3.04 2.37 4.44 3.12 2.4
0.3 3.38 2.65 2.12 3.47 2.7 2.15

Table 6: Comparison of the variation in Ncs for i=15∘.

h1/B0 Df/B0 c1/c2
Xiao et al. (2019) Present study

c1/𝛾𝛾B0 c1/𝛾𝛾B0
1 2 4 6 1 2 4 6

0.5

0.25

0.25 5.71 5.73 5.74 5.74 5.68 5.70 5.71 5.72
0.5 5.71 5.73 5.74 5.74 5.68 5.70 5.71 5.72
0.75 5.53 5.57 5.58 5.59 5.49 5.55 5.56 5.57
1 4.51 4.58 4.61 4.63 4.49 4.53 4.58 4.60

0.50

0.25 4.70 4.75 4.77 4.77 4.68 4.71 4.74 4.74
0.5 4.70 4.75 4.77 4.77 4.68 4.72 4.75 4.75
0.75 4.70 4.74 4.77 4.77 4.68 4.71 4.75 4.75
1 4.51 4.57 4.61 4.62 4.45 4.51 4.59 4.59

1

0.25

0.25 5.71 5.73 5.73 5.75 5.68 5.70 5.71 5.72
0.5 5.71 5.73 5.73 5.74 5.68 5.70 5.70 5.71
0.75 5.52 5.57 5.58 5.59 5.50 5.55 5.56 5.57
1 4.51 4.58 4.61 4.63 4.48 4.55 4.59 4.61

0.50

0.25 4.70 4.75 4.77 4.78 4.68 4.72 4.74 4.75
0.5 4.71 4.75 4.77 4.78 4.67 4.74 4.75 4.76
0.75 4.70 4.75 4.77 4.78 4.66 4.74 4.74 4.75
1 4.51 4.58 4.62 4.62 4.49 4.55 4.60 4.61

2

0.25

0.25 5.71 5.73 5.74 5.73 5.69 5.72 5.72 5.73
0.5 5.71 5.73 5.74 5.74 5.69 5.71 5.72 5.73
0.75 5.52 5.57 5.58 5.59 5.50 5.55 5.56 5.57
1 4.51 4.58 4.62 4.63 5.49 5.53 5.54 5.55

0.50

0.25 4.70 4.74 4.77 4.79 4.69 4.72 4.75 4.77
0.5 4.70 4.76 4.77 4.77 4.68 4.70 4.73 4.75
0.75 4.70 4.74 4.76 4.78 4.67 4.68 4.70 4.72
1 4.51 4.58 4.61 4.62 4.47 4.54 4.59 4.60

3

0.25

0.25 5.70 5.73 5.74 5.74 5.69 5.71 5.72 5.72
0.5 5.70 5.73 5.74 5.74 5.69 5.71 5.72 5.72
0.75 5.52 5.56 5.58 5.58 5.50 5.55 5.56 5.57
1 4.51 4.58 4.61 4.62 4.48 4.55 4.58 4.60

0.50

0.25 4.71 4.75 4.77 4.78 4.69 4.72 4.74 4.77
0.5 4.70 4.75 4.77 4.78 4.68 4.72 4.74 4.77
0.75 4.70 4.75 4.77 4.77 4.67 4.71 4.73 4.73
1 4.51 4.58 4.61 4.63 4.49 4.55 4.59 4.60
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Table 7: Comparison of the variation in Ncs for i=30∘.

h1/B0 Df/B0 c1/c2
Xiao et al. (2019) Present study

c1/𝛾𝛾B0 c1/𝛾𝛾B0
1 2 4 6 1 2 4 6

0.5

0.25

0.25 5.15 5.20 5.23 5.23 5.11 5.16 5.21 5.21
0.5 5.15 5.20 5.22 5.23 5.11 5.16 5.21 5.20
0.75 4.86 4.95 5.00 5.01 4.81 4.88 4.91 4.96
1 3.88 4.01 4.07 4.09 3.82 4.01 4.03 4.05

0.50

0.25 4.09 4.18 4.23 4.24 4.05 4.16 4.20 4.21
0.5 4.09 4.18 4.23 4.24 4.02 4.14 4.18 4.20
0.75 4.09 4.18 4.23 4.24 4.01 4.12 4.16 4.18
1 3.88 4.00 4.07 4.09 3.84 3.95 4.02 4.05

1

0.25

0.25 5.15 5.20 5.22 5.23 5.10 5.15 5.20 5.21
0.5 5.15 5.20 5.22 5.23 5.09 5.13 5.19 5.20
0.75 4.85 4.95 5.00 5.01 4.80 4.85 4.90 4.93
1 3.83 3.99 4.06 4.08 3.80 3.92 3.99 4.01

0.50

0.25 4.10 4.19 4.24 4.25 4.07 4.11 4.20 4.22
0.5 4.10 4.19 4.23 4.25 4.05 4.10 4.19 4.20
0.75 4.10 4.19 4.23 4.25 4.04 4.10 4.18 4.19
1 3.83 3.99 4.06 4.08 3.80 3.95 4.04 4.06

2

0.25

0.25 5.15 5.20 5.22 5.23 5.11 5.17 5.20 5.21
0.5 5.15 5.20 5.22 5.23 5.10 5.17 5.20 5.21
0.75 4.85 4.95 5.00 5.01 4.82 4.90 4.96 4.99
1 3.83 3.99 4.06 4.08 3.81 3.95 4.01 4.04

0.50

0.25 4.09 4.19 4.23 4.25 4.07 4.15 4.20 4.22
0.5 4.09 4.19 4.23 4.25 4.05 4.14 4.20 4.21
0.75 4.09 4.19 4.23 4.25 4.05 4.14 4.20 4.21
1 3.82 3.98 4.05 4.07 3.80 3.94 4.01 4.04

3

0.25

0.25 5.16 5.20 5.22 5.23 5.11 5.18 5.20 5.21
0.5 5.16 5.20 5.22 5.23 5.11 5.17 5.20 5.21
0.75 4.85 4.95 5.00 5.01 4.81 4.92 4.99 5.00
1 3.83 3.99 4.06 4.08 3.80 3.96 4.03 4.06

0.50

0.25 4.10 4.19 4.23 4.25 4.07 4.15 4.20 4.23
0.5 4.09 4.19 4.23 4.24 4.06 4.14 4.20 4.22
0.75 4.10 4.19 4.23 4.24 4.05 4.12 4.18 4.20
1 3.83 3.99 4.06 4.08 3.80 3.93 4.03 4.06
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Table 8: Comparison of the variation in Ncs for i=45∘.

h1/B0 Df/B0 c1/c2
Xiao et al. (2019) Present study

c1/𝛾𝛾B0 c1/𝛾𝛾B0
1 2 4 6 1 2 4 6

0.5

0.25

0.25 4.57 4.63 4.66 4.67 4.54 4.60 4.62 4.64
0.5 4.57 4.64 4.66 4.68 4.53 4.60 4.61 4.63
0.75 4.23 4.34 4.40 4.41 4.21 4.31 4.37 4.40
1 3.44 3.57 3.63 3.65 3.41 3.53 3.55 3.59

0.50

0.25 3.49 3.62 3.67 3.70 3.45 3.58 3.62 3.67
0.5 3.49 3.61 3.67 3.70 3.44 3.59 3.60 3.67
0.75 3.49 3.61 3.68 3.70 3.43 3.56 3.59 3.66
1 3.44 3.57 3.63 3.65 3.42 3.53 3.56 3.64

1

0.25

0.25 4.57 4.63 4.66 4.67 4.55 4.60 4.63 4.65
0.5 4.57 4.63 4.66 4.68 4.54 4.58 4.62 4.64
0.75 4.13 4.28 4.35 4.37 4.11 4.25 4.33 4.35
1 3.16 3.41 3.51 3.54 3.11 3.38 3.50 3.52

0.50

0.25 3.49 3.61 3.68 3.69 3.45 3.59 3.64 3.67
0.5 3.49 3.61 3.68 3.69 3.44 3.58 3.63 3.67
0.75 3.49 3.61 3.68 3.69 3.43 3.57 3.63 3.67
1 3.16 3.41 3.51 3.54 3.12 3.38 3.50 3.52

2

0.25

0.25 4.58 4.64 4.66 4.68 4.54 4.60 4.62 4.66
0.5 4.58 4.63 4.67 4.68 4.53 4.60 4.61 4.64
0.75 4.11 4.28 4.35 4.38 4.10 4.25 4.32 4.32
1 3.15 3.41 3.50 3.54 3.11 3.40 3.48 3.50

0.50

0.25 3.49 3.61 3.67 3.69 3.44 3.58 3.62 3.64
0.5 3.49 3.61 3.68 3.69 3.42 3.56 3.61 3.63
0.75 3.49 3.61 3.67 3.69 3.41 3.54 3.58 3.61
1 3.15 3.41 3.51 3.54 3.10 3.36 3.52 3.52

3

0.25

0.25 4.58 4.64 4.67 4.67 4.55 4.62 4.64 4.65
0.5 4.58 4.63 4.67 4.68 4.54 4.60 4.62 4.64
0.75 4.11 4.28 4.35 4.37 4.08 4.24 4.31 4.35
1 3.15 3.40 3.51 3.54 3.12 3.36 3.41 3.48

0.50

0.25 3.49 3.61 3.67 3.69 3.44 3.60 3.62 3.65
0.5 3.48 3.61 3.67 3.69 3.43 3.60 3.61 3.63
0.75 3.49 3.61 3.67 3.67 3.42 3.58 3.60 3.63
1 3.15 3.40 3.51 3.54 3.13 3.38 3.49 3.51
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0.5 3.48 3.61 3.67 3.69 3.43 3.60 3.61 3.63
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5 Conclusions
This paper has investigated the seismic bearing capacity of
shallow foundations near slope using pseudo-static limit
equilibrium analysis. Linear failure mechanism has been
proposed to obtain pseudo-static bearing capacity coef-
ficients of embedded strip footing near slope using limit
equilibrium analysis. The PSO technique has been applied
to obtain minimum bearing capacity coefficients.

Based on the present investigation, the following con-
clusions can be drawn:

1. N𝛾𝛾E values from the present analysis agreed well
withother analyses reportedbyAskari andFarzaneh
(2003), Sawada et al. (1994) and Yamamoto (2010).
The present analysis shows a tendency to decrease
N𝛾𝛾E values by increasing the horizontal seismic co-
efficient (kh) and vertical seismic coefficient (kv).

2. The seismic bearing capacity coefficient Ncs was
found relatively minor error value with previous re-
searchers.

3. The minimum pseudo-static bearing capacity coef-
ficients are presented in the form of design table
for practical use in geotechnical engineering. It has
been observed that the magnitude of bearing capac-
ity coefficients decreases with an increase in slope
inclination.

4. The seismic bearing capacity decreases with greater
undrained shear strength ratio (c1/c2) and the effect
becomes more significant when the thickness of the
top layer decreases.

5. The value of Ncs increases with increasing c1/𝛾𝛾B0,
whereas thiseffect recedes with an increase of
c1/𝛾𝛾B0. Also,greater value of c1/𝛾𝛾B would decrease
the effect of bottom layer.

Data availability statement: The authors confirm that
some data and code generated during this study are pro-
prietary or confidential and may only be provided with re-
strictions (e. g., PSO code).
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A Appendix I

PA1 =
pLB0
B0 + h1

(B0 − h1 cot αA1)
{︂
(1 − kv) sin (αA2 − ϕ2) + kh tanϕ1 cos (αA2 − ϕ2)

cos (αA2 − ϕ2 − δ2)

}︂

+12 (B0 − h1 cot αA1) h2𝛾𝛾2
{︂
(1 − kv) sin (αA2 − ϕ2) + kh cos (αA2 − ϕ2)

cos (αA2 − ϕ2 − δ2)

}︂

+𝛾𝛾1h1 (B0 − h1 cot αA1)
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{︂
(1 − kv) sin (αA2 − ϕ2) + kh tanϕ1 cos (αA2 − ϕ2)

cos (αA2 − ϕ2 − δ2)

}︂

−2c2h2
sin (αA2 − ϕ2)

cos (αA2 − ϕ2 − δ2)

−c2h2 cot αA2
cos (αA2 − ϕ2)

cos (αA2 − ϕ2 − δ2)

−c1
[︂
h1 cot αA1

cos (αA2 − ϕ2)
cos (αA2 − ϕ2 − δ2)

− B0
cos (αA2 − ϕ2)

cos (αA2 − ϕ2 − δ2)

]︂

Pp2 =
1
2h

2
2 cot αp2𝛾𝛾2

{︃
(1 − kv) sin

(︀
ϕ2 + αp2

)︀
− kh cos

(︀
ϕ2 + αp2

)︀

cos
(︀
ϕ2 + αp2 + δ2

)︀
}︃

+ 𝛾𝛾1h1h2 cot αp2{︃
(1 − kv) sin

(︀
ϕ2 + αp2

)︀
+ kh tanϕ1 cos

(︀
ϕ2 + αp2

)︀)︀

cos
(︀
ϕ2 + αp2 + δ2

)︀
}︃

+ 𝛾𝛾1Df

(︀
h1 cot αp1 + h2 cot αp2

)︀
(︀
h1 + h1 cot αp1 + h2 cot αp2

)︀h2 cot αp2
{︃
(1 − kv) sin

(︀
ϕ2 + αp2

)︀
+ kh tanϕ1 cos

(︀
ϕ2 + αp2

)︀

cos
(︀
ϕ2 + αp2 + δ2

)︀
}︃

+ 2c2h2

{︃
sin

(︀
ϕ2 + αp2

)︀

cos
(︀
ϕ2 + αp2 + δ2

)︀
}︃
+

c1h2 cot αp2

{︃
cos

(︀
ϕ2 + αp2

)︀

cos
(︀
ϕ2 + αp2 + δ2

)︀
}︃
+

c2h2 cot αp2

{︃
cos

(︀
ϕ2 + αp2

)︀

cos
(︀
ϕ2 + αp2 + δ2

)︀
}︃

B Appendix II

a1 =
𝛾𝛾1
𝛾̄𝛾

⎧
⎨
⎩

(︁
h1
B0

cot αp1 + 2 h2
B0

cot αp2
)︁

h1
B0
−

1
4

(︁
h1 cot αp1 + h2 cot αp2 − Df

tan i +
B0
2

)︁2
tan αp1

⎫
⎬
⎭

{︃
(1 − kv) sin

(︀
ϕ1 + αp1

)︀
− kh cos

(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀
}︃

{︃
(1 − kv) sin

(︀
ϕ1 + αp1

)︀
+ kh tanϕ2 cos

(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀
}︃

+
(︂
h2
B0

)︂2
cot αp2

𝛾𝛾2
𝛾̄𝛾

{︃
(1 − kv) sin

(︀
ϕ2 + αp2

)︀
− kh cos

(︀
ϕ2 + αp2

)︀

cos
(︀
ϕ2 + αp2 + δ2

)︀
}︃

+2𝛾𝛾1
𝛾̄𝛾

h1
B0

h2
B0

cot αp2
{︃
(1 − kv) sin

(︀
ϕ2 + αp2

)︀
+ kh tanϕ2 cos

(︀
ϕ2 + αp2

)︀

cos
(︀
ϕ2 + αp2 + δ2

)︀
}︃

−
(︁
2 − h1

B0
cot αA1

)︁
h1
B0

𝛾𝛾1
𝛾̄𝛾{︁

(1−kv) sin(αA1−ϕ1)+kh cos(αA1−ϕ1)
cos(αA1−ϕ1−δ1)

}︁

+2𝛾𝛾1
𝛾̄𝛾

h1
B0

(︁
1 − h1

B0
cot αA1

)︁
{︂
(1 − kv) sin (αA1 − ϕ1) + kh tanϕ2 cos (αA1 − ϕ1)

cos (αA1 − ϕ1 − δ1)

}︂

−
(︂
1 − h1

B0
cot αA1

)︂
h2
B0

𝛾𝛾2
𝛾̄𝛾{︂

(1 − kv) sin (αA2 − ϕ2) + kh cos (αA2 − ϕ2)
cos (αA2 − ϕ2 − δ2)

}︂

−2𝛾𝛾1
𝛾̄𝛾

h1
B0

(︂
1 − h1

B0
cot αA1

)︂

{︂
(1 − kv) sin (αA2 − ϕ2) + kh tanϕ1 cos (αA2 − ϕ2)

cos (αA2 − ϕ2 − δ2)

}︂

b1 = 2𝛾𝛾1
𝛾̄𝛾
tan i

(︂ Df
B0 tan i −

1
2

)︂2

{︃
(1 − kv) sin

(︀
ϕ1 + αp1

)︀
− kh cos

(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀
}︃

−2𝛾𝛾1
𝛾̄𝛾

h2
B0

cot αp2
tan

(︁
Df
B0

− 1
2

)︁
2
(︁
Df
B0

− tan i
)︁

{︁
2 Df
B0

+ tan
(︁
2 h1
B0

− 1
)︁}︁

{︃
(1 − kv) sin

(︀
ϕ1 + αp1

)︀
+ kh tanϕ2 cos

(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀
}︃

+2𝛾𝛾1
𝛾̄𝛾

h2
B0

cot αp2
tan

(︁
Df
B0

− 1
2

)︁
2
(︁
Df
B0

− tan i
)︁

{︁
2 Df
B0

+ tan
(︁
2 h1
B0

− 1
)︁}︁

{︃
(1 − kv) sin

(︀
ϕ2 + αp2

)︀
+ kh tanϕ1 cos

(︀
ϕ2 + αp2

)︀

cos
(︀
ϕ2 + αp2 + δ2

)︀
}︃

d1 = 2 c2c̄
h2
B0

sin
(︀
ϕ2 + αp2

)︀

cos
(︀
ϕ2 + αp2 + δ2

)︀+

c1
c̄
h2
B0

cot αp2
cos

(︀
ϕ2 + αp2

)︀

cos
(︀
ϕ2 + αp2 + δ2

)︀+

c2
c̄
h2
B0

cot αp2
cos

(︀
ϕ2 + αp2

)︀

cos
(︀
ϕ2 + αp2 + δ2

)︀

+ c1
c̄
h1
B0

sin
(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀

+ c1
c̄ sin αp1{

h1
2B0

cos ecαp1 −
h2
2B0

cot αp2 sec αp1+

1
2

Df
B0 tan i

sec αp1 −
1
4 sec αp1}
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sin
(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀ + c1
c̄ cot αp1

{︂
h1
2B0

cos ecαp1 −
h2
2B0

cot αp2 sec αp1 +
1
2

Df
B0 tan i sec αp1 −

1
4 sec αp1

}︂

cos
(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀ − c1
c̄
h2
B0

cot αp2
cos

(︀
ϕ1 + αp1

)︀

cos
(︀
ϕ1 + αp1 + δ1

)︀

+2 c1c̄
h1
B0

sin (αA1 − ϕ1)
cos (αA1 − ϕ1 − δ1)

+

c1
c̄
h1
B0

cot αA1
cos (αA1 − ϕ1)

cos (αA1 − ϕ1 − δ1)

+ c2c̄
cos (αA1 − ϕ1)

cos (αA1 − ϕ1 − δ1)
+

c2
c̄
h1
B0

cot αA1
cos (αA1 − ϕ1)

cos (αA1 − ϕ1 − δ1)

+2 c2c̄
h2
B0

cos (αA2 − ϕ2)
cos (αA2 − ϕ2 − δ2)

+ c1c̄
cos (αA2 − ϕ2)

cos (αA2 − ϕ2 − δ2)
−

c1
c̄
h1
B0

cot αA1
cos (αA2 − ϕ2)

cos (αA2 − ϕ2 − δ2)

e1 =
{︂
(1 − kv) sin (αA1 − ϕ1) + kh cos (αA1 − ϕ1)

cos (αA1 − ϕ1 − δ1)

}︂

−

⎧⎨
⎩

(︁
1 − h1

B0
cot αA1

)︁

1 + h1
B0

⎫⎬
⎭

{︂
(1 − kv) sin (αA1 − ϕ1) + kh tanϕ2 cos (αA1 − ϕ1))

cos (αA1 − ϕ1 − δ1)

}︂

+

⎧⎨
⎩

(︁
1 − h1

B0
cot αA1

)︁

1 + h1
B0

⎫⎬
⎭

{︂
(1 − kv) sin (αA2 − ϕ2) + kh tanϕ1 cos (αA2 − ϕ2)

cos (αA2 − ϕ2 − δ2)

}︂


