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Abstract: The paper outlines applications of fractional calculus for 
dynamic measurements while developing a method for description 
of transducer dynamic properties, which the authors consider to be 
the original and unique achievement of their work. The main 
objective of the paper is to show the implementation of  a fractional 
calculus-based method that allows for description of dynamic 
properties of transducers of arbitrary orders (not only integer). The 
paper presents possibilities of using fractional calculus in dynamic 
measurements for modelling an accelerometer and a pressure 
transducer. Tests are executed in the MATLAB&Simulink 
environment. New methods of modelling transducers are important 
particularly in the case of the development of new technologies and 
materials the performance of which is beyond the scope of dynamic 
behaviour modelled by means of differential equations of integer 
orders. An example here can be a pair:  a capacitor (integer order 
model) and supercapacitor (fractional order model). 
 
Key words: accelerometer, fractional calculus, dynamic 
measurements, MATLAB&Simulink, pressure transducer. 
 
1. INTRODUCTION  
 

The dynamic development of recent research into the 
use of fractional calculus for the analysis of dynamic 
systems [1] and [2] encouraged  the authors of this paper to 
attempt the make use of it for the analysis and modelling of 
an accelerometer [3] and a pressure transducer [4]. 

The main objective of this work is the implementation 
of a fractional calculus-based method [5], and [6] that allows 
for the description of dynamic properties of signal 
processing measuring transducers with integer-order and 
fractional-order. Fractional calculus is a generalisation of 
integral-order differential calculus – this is confirmed by 
laboratory testing of dynamic systems [3], [6] and [7]. 

Modelling measurement transducers by derivative of 
arbitrary orders opens up a number of possibilities in the 
field of the dynamic system identification and the 
development of new, earlier unattainable control algorithms 
for intelligent measurement systems [8]. 

 
 
 
 

2. SELECTED ISSUES OF THE FRACTIONAL 
CALCULUS 
 

In the fractional calculus a derivative of arbitrary order 
is treated as an interpolation of a sequence of operators of 
discrete orders with operators of continuous orders. A 
notation introduced by H.D. Davis [2] is used here in which 
a fractional order derivative of )(tf  function  is represented 

as: 

)(0 tfDt t
            (1) 

where 0t  and t  define the integration or differentiation 

interval,   is the order of the derivative. 
As the problem has been continually developed, there are 

many definitions of  fractional derivative [1] and [2]. Describing 
dynamic properties of the measuring transducers using 
fractional arithmetic, we can use one of three definitions: 
Grünwald-Letnikov, Riemann-Liouville and Caputo. 

The function of a real variable )(tf  defined in the 

 tt ,0  interval is given. Assuming that the function 
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The Riemann-Liouville’s fractional derivative (3) is the 
function described by the formula: 
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where  is the order of integration within the   tt ,0  interval 

of )(tf  function, kk  1 , R , )(x is defined as: 
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The Caputo’s definition of fractional derivative is 
described as: 
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where: nn  1 . 
 
3. ACCELEROMETER. CONCEPT, RESEARCH 
METHODOLOGY AND RESULTS  
 

Transducers measuring accelerations (accelerometers) 
are tested [3], [5], [6] and [10], treated as a representative 
group of measuring transducers. In the classic notation, 
accelerometers are described with second-order differential 
equations (6), like many other groups of measuring 
transducers. Simulation and laboratory testing of a second-
order measuring transducer (Fig.1.) - accelerometer has been 
tested.  

 
 

Fig. 1. Kinetic diagram of an accelerometer: m – seismic mass,  

sk  –  spring constant, tB  –  damping coefficient,  

x  –  object motion relative to a fixed system of coordinates, 
 –  motion of a vibrating mass relative to a fixed system of 

coordinates, w  –  motion of a vibrating mass relative to a vibrating 
object, 1- base, 2- transducer housing [3] and [7] 

 
Dynamic behaviour of the accelerometer is written 

down in a form of a differential equation of the second order 
[3]: 
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where: w - motion of a vibrating mass relative to a vibrating 
object, x - object motion relative to a fixed system of 
coordinates, parameters characteristic of accelerometers k - 
amplification coefficient: 0 - natural pulsation and  - 

damping degree. Introducing a non-integral order to the 
measuring transducer’s equation (6) converts it into:  
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 where v  – fractional order derivatives. 
The concept of authors’ work [3], [5], [6] and [7] is 

based on a comparison of different models of an 
accelerometer’s dynamic behaviour (based on differential 
equations of integer and fractional orders) with the 
processing characteristics of a real accelerometer so as to 
obtain an unambiguous answer to the question about which 
method of modelling is more accurate and whether there are 
any criteria for which a certain model is better at 
reproducing the dynamic behaviour of the real 
accelerometer. 

The research plan has included the following algorithm 
of proceedings: 
1. Investigating processing characteristics of real 

accelerometers over the entire range of the measuring 
signal processing  with the highest possible measurement 
accuracy. 

2. Developing models describing dynamic behaviour of real 
accelerometers by means of differential equations of 
integer order on the basis of characteristics of the 
measuring signal processing. 

3. Developing models describing dynamic behaviour of real 
accelerometers by means of fractional calculus on the 
basis of characteristics of the measuring signal 
processing. 

4. Comparing processing characteristics of the 
accelerometer models from points 2 and 3 with their real 
counterparts and comparing processing characteristics of 
different models with each other. 

It presents research results of acceleration 
measurements in the measurement system shown in Fig.2. 
Table 1 includes some research results. 

 

 
 

Fig. 2. Measurement system: A1, A2 - model and tested measuring 
transducers [3] 

 
Signals received from accelerometers of different 

sensitivities were compared in the system. Sensitivity of 
accelerometer A1 which was adopted as a model was ca. 30 
times higher than that of the investigated accelerometer A2. 
Equations of integer and fractional orders describing 
dynamic behaviour of the investigated accelerometer were 
determined by means of the ARX method (AutoRegressive 
with eXogenous input identification method) [3], [4], [6] and 
[10] on the basis of the data from accelerometers.   

The signals from determined models were compared to 
the signal from the model accelerator. The relative errors of 
measurements were determined adopting the signal from the 
model accelerator as a reference value. The median of the 
series of 500 successive measurement samples was adopted 
as the error measure. Measurements were taken separately 
for the following frequencies of the vibration exciter: 100 
Hz, 200 Hz, 300 Hz, 400 Hz and 500 Hz. On the basis of 
preliminary investigations it was found out that in the 
examined cases the models described by means of fractional 
order equations convey the accelerometer processing 
characteristics more accurately than integer order equations. 
Depending on examined frequencies the accuracy of 
reproduced dynamic behaviour of an accelerometer by a 
model is between ca. 5% to ca. 10%. These values can be 
increased if we developed a more accurate model of 
fractional orders. Table 1 presents results of laboratory tests. 
Theoretical and simulation tests are included in works [3], 
[5], [6] and [7]. 

 
 

Table 1. Values of median relative error for the transducer’s model 
of integer and fractional order. [5] 
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Frequency 
 

[Hz] 

Median 
relative error 
for the integer 
order model 

[%] 

Median relative 
error for the 

fractional order 
model 
[%] 

Difference 
 

[%] 

100 30.8089 20.8040 10.0049 
200 30.2997 20.8041 9.4956 
300 29.5564 20.8042 8.7522 
400 28.3097 20.8039 7.5058 
500 26.0184 20.8040 5.2144 

 
Conclusions from this research are compatible with 

conclusions from the laboratory tests [5]. Results of the 
research suggest that the in the future for new models of 
accelerometers fractional calculus model of measuring 
transducer will more accurate at reflecting the dynamics of 
the input signal processing than the model described by the 
classical differential equations. 

 
4. MEMBRANE PRESSURE TRANSDUCER 
 

This chapter presents attempt at a mathematical 
description and frequency analysis of a transmitter of 
continuous quantities, like for example pressure, with the use 
of the fractional order differential equations. To examine 
dynamic properties of the pressure transducer, a model of a 
pressure chamber with an inlet pipe was made (Fig. 3).  

 

 
 

Fig. 3. Pressure chamber with an inlet pipe: r, l – pipe dimensions, 
p0 – inlet pressure, p – pressure in the transmitter’s chamber [4] 

 
The differential equation constituting the mathematical 

model of the analysed pneumatic system, in which the 
fractional order differential equation is applied, looks as 
follows: 
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where: )(tp  – pressure in the transmitter’s chamber,  

)(0 tp  – inlet pressure, 0v  – order of derivative. 

To determine the derivative of a continuous function, 
i.e. pressure in the transmitter’s chamber, we used the 
Riemann-Liouville definition of fractional derivative (3). 
The Laplace transform for the Riemann-Liouville fractional 
derivative is [2]: 
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where: Njj  1  

Applying the Laplace transform to equation (8), for 
zero initial conditions, we obtain: 
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From equation (11) we obtain the transfer function of the 
analysed pressure transmitter: 
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Substituting: 
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in the formula (12), we obtain the spectral transfer of the 
transmitter: 
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Owing to elementary transformations we can calculate 
the real and imaginary parts of the spectral transform 
function: 

)()()( )()()(  vvv jQPjG        (15) 
  

Knowing the real and imaginary part of the spectral 
transform of the transmitter, we can determine the equation 
describing the logarithmic amplitude function: 
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as well as the equation describing the logarithmic phase 
characteristic: 
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5. NUMERICAL TESTS AND SIMULATIONS 
 

In order to verify the dependencies describing 
logarithmic functions of amplitude (16) and phase (17) of 
the tested trasducers, a pneumatic pressure transducer was 
modelled in the MATLAB&Simulink described by means of 
an ordinary differential equation and a fractional order 
differential equation.  

 

s  
 

Fig. 4. Logarithmic frequency responses of the pressure transducer 
described by the ordinary and fractional order equation [4] 

 
While describing the transmitter with the use of the 

fractional order differential equation was adopted parameter 
v=1 and compared the obtained logarithmic functions of the 
amplitude and phase with the logarithmic functions of 
amplitude and phase obtained from a description of the 
pressure transmitter made with an ordinary differential 
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equation. In simulations was adopted: pulsation 
500  rad/s and damping coefficient 7.0 . 

The transfer function of the pneumatic pressure 
transmitter described with the use of the ordinary differential 
equation looks as follows: 

                
2

00
2

2
0

0 2)(

)(
)(







sssp

sp
sG       (18)

   
While conducting simulation of equation (18), which 

represents dynamics of phenomena occurring in the analysed 
pneumatic system, in MATLAB environment, we obtained 
the frequency responses outlined in Fig.4: 

When simulating in MATLAB&Simulink environment 
equations (16) and (17), describing the pneumatic pressure 
transducer with the use of the fractional order differential 
equation and adopting the parameter 0v , we obtained the 
the same functions outlined in Fig. 4. The comparison of 
classic and fractional models’ described by frequency 
diagrams have the same course in the tested frequency 
ranges as the classic models. This means that fractional 
calculus is a generalisation of integral-order differential 
calculus [3]. 

 
6. CONCLUSIONS 
 

In this paper the authors presented (proven by them) 
thesis: method of description of the dynamic properties of 
accelerometer and pressure transducer in terms of signal 
processing, based on fractional calculus, allows for a 
description of dynamic properties of broader class of 
measuring transducers, i.e. integer-order and fractional-
order. 

The paper presented possibilities of using fractional 
calculus in modelling of accelerometer. It describes a 
laboratory measurement system for investigating dynamic 
properties of it. This paper presented also attempt at a 
mathematical description a measuring transducer of 
continuous quantities, like for example pressure, with the use 
of the fractional order differential equations.  

The authors wants to continue their work on the use of 
fractional calculus in dynamic measurements for measuring 
transducers different from those that are introduced in this 
paper, especially those requiring fast and accurate 
measurements. Further research will be conducted to verify 
whether: the model of dynamic properties of real 
accelerometer and pressure transducer determined by means 

of fractional calculus conveys the dynamic performance of 
the real accelerometer over the entire processing range 
more accurately than modelling of the same transducer by 
means of integer order differential equations. 
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O PEWNYCH ZASTOSOWANIACH RACHUNKU RÓŻNICZKOWEGO 
NIECAŁKOWITYCH RZĘDÓW W MODELOWANIU AKCELEROMETRU  

I PRZETWORNIKA CIŚNIENIA  
 

W artykule przedstawiono możliwości zastosowania rachunku różniczkowego niecałkowitych rzędów (ang. fractional 
calculus) do opisu właściwości dynamicznych akcelerometru i przetwornika ciśnienia dowolnych rzędów, co autorzy uważają 
za swoje oryginalne osiągnięcie w pracy naukowej. Badania symulacyjne wykonano w środowisku MATLAB&Simulink.  
Autorzy zakładają, że przyszłości właściwości dynamiczne modeli przetworników o nowych rozwiązaniach konstrukcyjnych 
i technologicznych będą wymagały opisu za pomocą rachunku różniczkowego niecałkowitych rzędów. Takie założenie, że 
„teoria” powinna wyprzedzać „praktykę” wydaje się być słusznym gdyż wielokrotnie sprawdzała się w przeszłości. 
Przykładem może być tutaj klasyczny kondensator i jego „ułamkowy” odpowiednik: superkondensator. 
 
Słowa kluczowe: akcelerometr, miernictwo dynamiczne, MATLAB&Simulink, przetwornik ciśnienia, rachunek 
różniczkowo-całkowy niecałkowitych rzędów. 


