PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the effect of tab cooling on the lithium-ion battery pack life cycle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electric vehicles are the future of mobility. Electric vehicles have batteries to store energy and the most common type of batteries used in electric vehicle’s battery packs are lithium-ion cells. These cells have very high energy density and dissipate heat during charging and discharging cycles. There is a need to have an efficient cooling system to dissipate this heat. Bigger-size batteries in four-wheelers use liquid cooling to ensure faster charging and longer battery life. Surface cooling and tab cooling are two popular types of liquid cooling systems for battery packs. Surface cooling is a preferred type of cooling system as it is less complex and cheaper, but it creates a temperature gradient inside the cell which is detrimental to cell life. This work proposes tab cooling as a solution to improve the life cycle of lithium-ion cells. Two sets of the battery pack, one with tab cooling and the other without a cooling system were tested under different conditions for multiple fast charging and discharging cycles until their initial capacity was reduced by 30%. The results show that with tab cooling the battery performed better and battery degradation was reduced.
Rocznik
Strony
291--299
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Automotive Research Center, Vellore Institute of Technology, Vellore, India
  • Automotive Research Center, Vellore Institute of Technology, Vellore, India
Bibliografia
  • [1] He, F., & Ma, L. (2016). Thermal management in hybrid power systems using cylindrical and prismatic battery cells. Heat Transfer Engineering, 37(6), 581−590. doi: 10.1080/01457632.2015.1060776
  • [2] Yang, Y., Wu, J., Song, X., & Gu, Z. (2022). Thermal management performance of lithium-ion battery using supercritical CO2 as cooling fluid. Heat Transfer Engineering, 1−14 doi: 10.1080/01457632.2022.2134082
  • [3] Nelson, P., Dees, D., Amine, K., & Henriksen, G. (2002). Modeling thermal management of lithium-ion PNGV batteries. Journal of Power Sources, 110(2), 349−356. doi: 10.1016/s0378-7753(02)00197-0
  • [4] Mohammadian, S.K., & Zhang, Y. (2015). Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles. Journal of Power Sources, 273, 431−439. doi: 10.1016/j.jpowsour.2014.09.110
  • [5] Tennessen, P.T., Weintraub, J.C., & Hermann, W.A. (2014). Extruded and ribbed thermal interface for use with a battery cooling system. U.S. Patent 8758924B2. Washington, USA.
  • [6] Teng, H., Ma, Y., Yeow, K., & Thelliez, M. (2011). Thermal characterization of a Li-ion battery module cooled through aluminum heat-sink plates. SAE International Journal of Passenger Cars - Mechanical Systems, 4(3), 1331−1342. doi: 10.4271/2011-01-2248
  • [7] Mohammed, A.H., Alhadri, M., Zakri, W., Aliniagerdroudbari, H., Esmaeeli, R., Hashemi, SR., Nadkarni, G., & Farhad, S. (2018). Design and comparison of cooling plates for a prismatic lithium-ion battery for electrified vehicles. SAE Technical Paper,2018-01-1188. doi: 10.4271/2018-01-1188
  • [8] Li, X., He, F., Zhang, G., Huang, Q., & Zhou, D. (2019). Experiment and simulation for pouch battery with silica cooling plates and copper mesh based air cooling thermal management system. Applied Thermal Engineering, 146, 866−880. doi: 10.1016/j.applthermaleng.2018.10.061
  • [9] Zhao, J., Rao, Z., Huo, Y., Liu, X., & Li, Y. (2015). Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles. Applied thermal engineering, 85, 33−43. doi: 10.1016/j.applthermaleng.2015.04.012
  • [10] Wang, T., Tseng, K.J., Zhao, J., & Wei, Z. (2014). Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies. Applied energy, 134, 229−238. doi: 10.1016/j.apenergy.2014.08.013
  • [11] Wang, T., Tseng, K. J., & Zhao, J. (2015). Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model. Applied Thermal Engineering, 90, 521−529. doi: 10.1016/j.applthermaleng.2015.07.033
  • [12] Fan, L., Khodadadi, J.M., & Pesaran, A.A. (2013). A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles. Journal of Power Sources, 238, 301−312. doi: 10.1016/j.jpowsour.2013.03.050.
  • [13] Kim, G.H., & Pesaran, A. (2007). Battery thermal management design modeling. World Electric Vehicle Journal, 1(1), 126−133. doi: 10.3390/wevj1010126
  • [14] Xie, J., Zang, M., Wang, S., & Ge, Z. (2017). Optimization investigation on the liquid cooling heat dissipation structure for the lithium-ion battery package in electric vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 231(13), 1735−1750. doi: 10.1177/0954407016685457
  • [15] Zhao, J., Rao, Z., & Li, Y. (2015). Thermal performance of minichannel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery. Energy Conversion and Management, 103, 157−165. doi: 10.1016/j.enconman.2015.06.056
  • [16] Teng, H., & Yeow, K. (2012). Design of direct and indirect liquid cooling systems for high-capacity, high-power lithium-ion battery packs. SAE International Journal of Alternative Powertrains, 1(2), 525−536. doi: 10.4271/2012-01-2017
  • [17] Janarthanam, S., Burrows, N., & Boddakayala, B.R. (2017). Factors Influencing Liquid over Air Cooling of High Voltage Battery Packs in an Electrified Vehicle. SAE Technical Paper, 2017-01-1171. doi: 10.4271/2017-01-1171
  • [18] Mevawalla, A., Panchal, S., Tran, M.K., Fowler, M., & Fraser, R. (2020). Mathematical Heat Transfer Modeling and Experimental Validation of Lithium-Ion Battery Considering: Tab and Surface Temperature, Separator, Electrolyte Resistance, Anode-Cathode rreversible and Reversible Heat. Batteries, 6(4), 61. doi: 0.3390/batteries6040061
  • [19] Ham, S.H., Jang, D. S., Lee, M., Jang, Y., & Kim, Y. (2023). Effective thermal management of pouch-type lithium-ion batteries using tab-cooling method involving highly conductive ceramics. Applied Thermal Engineering, 220, 119790. doi:10.1016/j.applthermaleng.2022.119790
  • [20] Liebertseder, J., Dollinger, A., Sorg, T., Berg, L.F., & Tübke, J. (2022). Battery Tab Cooling in Traction Battery Modules using Thermally Conductive Plastics, IEEE Xplore, Vehicle Power and Propulsion Conference, 1-4 November, Merced, USA, doi:10.1109/VPPC55846.2022.10003372
  • [21] Ahmad, T., Mishra, A., Ghosh, S., & Casari, C.S. (2022). Identifying efficient cooling approach of cylindrical lithium-ion batteries. Energy Technology, 10(2). doi: 10.1002/ente.202100888
  • [22] Hunt, I.A., Zhao, Y., Patel, Y., & Offer, G.J. (2016). Surface cooling causes accelerated degradation compared to tab cooling for lithium-ion pouch cells. Journal of The Electrochemical Society, 163(9), A1846. doi: 10.1149/2.0361609jes
  • [23] Zhao, Y., Diaz, L.B., Patel, Y., Zhang, T., & Offer, G.J. (2019). How to cool lithium ion batteries: optimising cell design using a thermally coupled model. Journal of The Electrochemical Society, 166(13), A2849. doi: 10.1149/2.0501913jes
  • [24] Zhao, Y., Patel, Y., Zhang, T., & Offer, G.J. (2018). Modeling the effects of thermal gradients induced by tab and surface cooling on lithium ion cell performance. Journal of The Electrochemical Society, 165(13), A3169−A3178. doi: 10.1149/2.0901813jes
  • [25] Li, S., Kirkaldy, N., Zhang, C., Gopalakrishnan, K., Amietszajew, T., Diaz, L.B., & Marinescu, M. (2021). Optimal cell tab design and cooling strategy for cylindrical lithium-ion batteries. Journal of Power Sources, 492, 229594. doi: 10.1016/j.jpowsour.2021.229594
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95e2b909-fe0b-42b9-b553-cba10b9e7984
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.