Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:443/baztech/element/bwmeta1.element.baztech-95dc0970-fa2c-4ca5-849d-e0a722cfaa80

Czasopismo

Biocybernetics and Biomedical Engineering

Tytuł artykułu

Numerical analysis of stent expansion process in coronary artery stenosis with the use of non-compliant balloon

Autorzy Bukala, J.  Kwiatkowski, P.  Malachowski, J. 
Treść / Zawartość http://www.ibib.waw.pl/pl/wydawnictwa/biocybernetics-and-biomedical-enginering-bbe/bbe-tomy http://www.journals.elsevier.com/biocybernetics-and-biomedical-engineering/
Warianty tytułu
Języki publikacji EN
Abstrakty
EN In the paper the authors present an applied methodology, data and numerical results for numerical analysis of the stent crimping process and stent implantation in the coronary artery stenosis with the use of a non-compliant angioplasty balloon. The authors focused on the modeling methodology of balloon angioplasty with minimum possible simplification, i.e.: a full load path (compression and inflation in single analysis), 3D unsymmetrical geometry and discretization, highly nonlinear material models (hyperelasticity, plastic kinematic formulation, crushable foam) and sophisticated contact models (bodies with highly different stiffness). The use of a highly compressible crushable foam material model for an arterial plaque is considered as the most original part of the work. The presented results allow for better understanding of the mechanisms governing stent crimping and implementation.
Słowa kluczowe
PL stent   angioplastyka wieńcowa   analiza numeryczna   angioplastyka balonowa  
EN stent   angioplasty   coronary   fea   numerical analysis   balloon  
Wydawca Nałęcz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences
Elsevier
Czasopismo Biocybernetics and Biomedical Engineering
Rocznik 2016
Tom Vol. 36, no. 1
Strony 145--156
Opis fizyczny Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor Bukala, J.
  • Department of Mechanics and Applied Computer Science, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, Warsaw 00-908, Poland, jakub.bukala@wat.edu.pl
autor Kwiatkowski, P.
  • Clinical Department of Interventional Cardiology, Central Clinical Hospital Ministry of Interior, Warsaw, Poland, psjkm@wp.pl
autor Malachowski, J.
  • Department of Mechanics and Applied Computer Science, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, Warsaw 00-908, Poland, jerzy.malachowski@wat.edu.pl
Bibliografia
[1] OECD. Health at glance 2013: OECD indicators. OECD Publishing; 2013 [Internet]. http://dx.doi.org/10.1787/health_glance-2013-en [accessed 20.03.2015].
[2] Kopaczynska M, Sobieszczańska B, Ulatowska-Jarza A, Hołowacz I, Buzalewicz I, Wasyluk Ł, et al. Photoactivated titania-based nanomaterials for potential application as cardiovascular stent coatings. Biocybern Biomed Eng 2014;34:189–97.
[3] Hermawan H, Mantovani D. Process of prototyping coronary stents from biodegradable Fe–Mn alloys. Acta Biomater 2013;9:8585–92.
[4] Puranik AS, Dawson ER, Peppas NA. Recent advances in drug eluting stents. Int J Pharm 2013;441:665–79.
[5] Grolich T, Crha M, Novotny L, Kala Z, Hep A, Nečas A, et al. Self-expandable biodegradable biliary stents in porcine model. J Surg Res 2015;193:606–12.
[6] Logan DL. A first course in the finite element method. 3rd ed. Brooks/Cole Wadsworth Group; 2002.
[7] Hyre MR, Pulliam RM, Squire JC. Prediction of stent endflare, arterial stresses and flow patterns in a stenotic artery. USA: Department of Mechanical Engineering, Virginia Military Institute; 2009.
[8] David Chua SN, Mac Donald BJ, Hashmi MSJ. Finite element simulation of stent and balloon interaction. J Mater Process Technol 2003;143–144:591–7.
[9] De Beulea M, Mortierb P, Carlierc SG, Verhegghed B, Van Impera R, Verdonckb P. Realistic finite element-based stent design: the impact of balloon folding. J Biomech 2008;41:383–9.
[10] Jua F, Xiaa Z, Sasaki K. On the finite element modelling of balloon-expandable stents. J Mech Behav Biomed Mater 2008;1:86–95.
[11] Zahedmanesh H, Kelly DJ, Lally C. Simulation of a balloon expandable stent in a realistic coronary artery — determination of the optimum modelling strategy. J Biomech 2010;43:2126–32.
[12] Ragkousis GE, Curzen N, Bressloff NW. Simulation of longitudinal stent deformation in a patient-specific coronary artery. Med Eng Phys 2014;36:467–76.
[13] Wu W, Wang WQ, Yang DZ, Qi M. Stent expansion in curved vessel and their interactions: a finite element analysis. J Biomech 2007;40:2580–5.
[14] Gervaso F, Capelli C, Petrini L. On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. J Biomech 2008;41: 1206–12.
[15] Bukala JK, Małachowski J, Kwiatkowski P. Finite element analysis of the percutaneous coronary intervention in a coronary bifurcation. Acta Bioeng Biomech 2014;16(4):23–31.
[16] MatWeb LLC. Medical grade stainless steel 316LVM; 2015 [Internet]. http://www.matweb.com/search/datasheet.aspx? matguid=29a84d10fada4e4fa3ebe3986e52d848 [accessed 20 March].
[17] Prendergast PJ, Lally C, Daly S, Reid AJ, Lee TC, Quinn D, et al. Analysis of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finite element modeling. ASME J Biomech Eng 2003;125:692–9.
[18] Baranowski P. Rubber material study in terms of modelling of terrain vehicle tire subjected to impulse loading.(Ph.D. thesis) Warsaw: Military University of Technology; 2014.
[19] Livermore Software Technology Corporation. LS-DYNA keyword user's manual. Vol. II. Material models. LS-DYNA Dev.; 2014.
[20] Teng Z, Zhang Y, Huang Y, Feng J, Yuan J, Lu Q, et al. Material properties of components in human carotid atherosclerotic plaques: a uniaxial extension study. Acta Biomater 2014;10:5055–63.
[21] Cunnane EM, Mulvihill JJE, Barrett HE, Healy DA, Kavanagh EG, Walsh SR, et al. Mechanical, biological and structural characterization of human atherosclerotic femoral plaque tissue. Acta Biomater 2015;11:295–303.
[22] Tracqui P, Broisat A, Toczek J, Mesnier N, Ohayon J, Riou L. Mapping elasticity moduli of atherosclerotic plaque in situ via atomic force microscopy. J Struct Biol 2011;174:115–23.
[23] Bajer C. Numerical modelling of space–time dynamic contact problems. Warsaw: IPPT PAN; 1997 (in Polish).
[24] Feng ZQ, Megnain B, Cros JM. Solution of large deformation impact problems with friction between Blatz–Ko hyperelastic bodies. Int J Eng Sci 2006;44:113–26.
[25] Bathe KJ. Finite element procedures. New Jersey: Prentice Hall Inc.; 1996.
[26] Hughes TJR. The finite element method: linear static and dynamic finite element analysis. New Jersey: Prentice Hall Inc.; 1987 [Chapter 4].
[27] Belytschko T, Liu WK, Moran B. Nonlinear finite elements for continua and structures. John Wiley & Sons Ltd.; 2001 [Chapters 5 and 6].
[28] Chen HY, Hermiller J, Sinha AK, Sturek M, Zhu L, Kassab GS. Effects of stent sizing on endothelial and vessel wall stress: potential mechanisms for in-stent restenosis. J Appl Physiol 2009;106:1686–91.
[29] Manolis AS. Reduced incidence of clinical restenosis with newer generation stents, stent oversizing, and high-pressure deployment: single-operator experience. Clin Cardiol 2001;24:119–26.
Uwagi
PL Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-95dc0970-fa2c-4ca5-849d-e0a722cfaa80
Identyfikatory
DOI 10.1016/j.bbe.2015.10.009