PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Catalytic activity of Pd-Ni in the oxidation of hydrogen for the safety of Catalytic activity of Pd-Ni in the oxidation of hydrogen for the safety of nuclear power plan

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pd-Ni/Al2O3 systems were investigated in the reaction of hydrogen oxidation in terms of their possible application as catalysts used in passive autocatalytic recombiners (PARs) used in nuclear power plants. Testing experiments were carried out in a flowing system at different temperatures and humidity of the reaction mixture. The bimetallic catalysts exhibited higher response to the increase of temperature and higher resistance to inhibit water than the monometallic palladium catalyst. They showed excellent stability during a few tens of hours, similarly, like their monometallic counterpart. Our bimetallic catalysts of hydrogen oxidation can be used as cheaper alternatives to catalysts based on the precious metals in the hydrogen oxidation without loss of their activity over time.
Słowa kluczowe
Rocznik
Strony
15--18
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • Institute of Physical Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland
  • Cardinal Stefan Wyszyński University, Wóycickiego 1/3, 01-938 Warsaw, Poland
Bibliografia
  • 1. Hanson, F.V. & Boudart, M. (1978). The reaction between H2 and O2 over supported platinum catalysts. J. Catal. 53, 56–67.
  • 2. Jones, M.G. & Nevell, T.G. (1990). Oxidation of hydrogen over supported palladium. J. Catal. 122, 219–229.
  • 3. Boreskov, G.K. (1983). Catalytic activation of dioxygen. Cat. Sci. Techn. 3, 40–137.
  • 4. Morfin, F., Sabroux, J.C. & Renouprez, A. (2004). Catalytic combustion of hydrogen for mitigating hydrogen risk in case of a severe accident in a nuclear power plant: study of catalysts poisoning in a representative atmosphere. Appl. Catal. B-Environ 47, 47–58. DOI: 10.1016/j.apcatb.2003.07.001.
  • 5. Rousset, J.L. & Bertolini, J.C. (1996). Theory of segregation using the equivalent-medium approximation and bond-strength modifications at surfaces: Application to fcc Pd-X alloys. Phys. Rev. B 53, 4947–4957. DOI: 10.1103/PhysRevB.53.4947.
  • 6. Helfensteyn, S., Luyten, J., Feyaerts, L. & Creemers, C. (2003). Modelling surface phenomena in Pd-Ni alloys. Appl. Surf. Sci. 212/213, 844–849. DOI: 10.1016/S0169-4332(03)00088-6.
  • 7. Bertolini J.C. (2000). Surface stress and chemical reactivity of Pt and Pd overlayers. Appl. Catal. A-Gen 191, 15–21.
  • 8. Piccolo, L., Piednoir, A. & Bertolini, J.C. (2005). Pd-Au single-crystal surfaces: Segregation properties and catalytic activity in the selective hydrogenation of 1,3-butadiene. Surf. Sci. 592, 169–181. DOI: 10.1016/j.susc.2005.07.005.
  • 9. Lim, F.C.H., Zhang, J., Jin, H., Sullivan, M.B. & Wu, P. (2013). A density functional theory study of CO oxidation on Pd-Ni alloy with sandwich structure. Appl. Catal. A-Gen 451, 79–85. DOI: 10.1016/j.apcata.2012.11.015.
  • 10. Moss, R.L., Pope, D. & Gibbens, H.R. (1977). Ethylene hydrogenation over nickel-palladium alloy films. J. Catal. 46, 204–213.
  • 11. Hammer, B. (1998). Reactivity of a stepped surface O dissociation on Pd(211). Faraday Discuss. 110, 323–333. DOI: 10.1039/A801126E.
  • 12. Śrębowata, A., Juszczyk, W., Kaszkur, Z. & Karpiński, Z. (2007). Hydrodechlorination of 1,2-dichloroethane on active carbon supported palladium-nickel catalysts. Catal. Today 124, 28–35. DOI: 10.1016/j.cattod.2007.02.010.
  • 13. Seshu Babu, N., Lingaiah, N. & Sai Prasad, P.S. (2012). Characterization and reactivity of Al2O3 supported Pd-Ni bimetallic catalysts for hydrodechlorination of chlorobenzene. Appl. Catal. B-Environ 111–112, 309–316. DOI: 10.1016/j.apcatb.2011.10.013.
  • 14. Hammer, B. & Nørskov, J.K. (2000). Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 45,71–129. DOI: 10.1016/S0360-0564(02)45013-4.
  • 15. Łomot, D. & Karpiński, Z. (2015). Hydrogen oxidation over alumina-supported palladium–nickel catalysts. Res. Chem. Intermed. 41, 9171–9179.DOI: 10.1007/s11164-015-1935-3.
  • 16. Womes, M., Cholley, T., Le Peltier, F., Morin, S., Didillon, B. & Szydlowski-Schildknecht, N. (2005). Study of the reaction mechanisms between Pt(acac)2 and alumina surface sites Application to a new refilling technique for the controlled variation of the particle size of Pt/Al2O3 catalysts. Appl. Catal. A-Gen 283, 9–22. DOI:10.1016/j.apcata.2004.12.030.
  • 17. Latusek, M.P., Heimerl R.M., Spigarelli, B.P. & Holles, J.H. (2009). Synthesis and characterization of supported bimetallic overlayer catalysts. Appl. Catal. A-Gen 358, 79–87. DOI: 10.1016/j.apcata.2009.01.038.
  • 18. Heck, R., Kelber, G., Schmidt, K. & Zimmer, H.J. (1995). Hydrogen reduction following severe accidents using the dual recombiner-igniter concept. Nucl. Eng. Des. 157, 311–319.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95d36f7e-4f3f-4366-9340-113325f2dc91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.