Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
With the increasing penetration rate of grid-connected renewable energy generation, the problem of grid voltage excursion becomes an important issue that needs to be solved urgently. As a new type of voltage regulation control method, electric spring (ES) can alleviate the fluctuations of renewable energy output effectively. In this paper, the background and basic principle of the electric spring are introduced firstly. Then, considering the influence of an electric spring on noncritical load voltage, noncritical loads are classified reasonably, and based on the electric spring phasor diagram, the control method to meet the noncritical load voltage constraint is proposed. This control method can meet the requirements of voltage excursions of different kinds of noncritical load, increase the connection capacity of the noncritical load and improve the voltage stabilization capacity of the electric spring. Finally, through the simulation case, the feasibility and validity of electric spring theory and the proposed control method are verified.
Czasopismo
Rocznik
Tom
Strony
709--724
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wz.
Twórcy
autor
- School of Electrical & Automation Engineering, Nanjing Normal University Wenyuan Road No.1, 210046 Nanjing, China
autor
- School of Electrical & Automation Engineering, Nanjing Normal University Wenyuan Road No.1, 210046 Nanjing, China
autor
- School of Electrical & Automation Engineering, Nanjing Normal University Wenyuan Road No.1, 210046 Nanjing, China
autor
- School of Electrical & Automation Engineering, Nanjing Normal University Wenyuan Road No.1, 210046 Nanjing, China
autor
- School of Electrical & Automation Engineering, Nanjing Normal University Wenyuan Road No.1, 210046 Nanjing, China
Bibliografia
- [1] Ma G., Xu G. C., Chen Y. X., Ju R., Multi-objective optimal configuration method for a standalone wind–solar–battery hybrid power system, IETRenewable Power Generation, vol. 11, no. 1, pp. 194–202 (2017).
- [2] Yazdanian M., Mehrizi-Sani A., Distributed Control Techniques in Microgrids, IEEE Transactions on Smart Grid, vol. 5, no. 6, pp. 2901–2909 (2014).
- [3] Aslani A., Helo P., Naaranoja M., Evaluation of renewable energy development in power generation in Finland, Journal of Renewable and Sustainable Energy, vol. 5, no. 6, pp. 1–13 (2013).
- [4] Zhao S. S., Sheng W. X., Meng X. L., Song X. H., Multi-resolution Model and Methodology for Analyzing the Impact of Voltage Quality on Maximum Penetration Level of Distributed Generation, Proceedings of CSEE, vol. 35, no. 6, pp. 1306–1313 (2015).
- [5] Abapour S., Zare K., Mohammadi-Ivatloo B., Dynamic planning of distributed generation units in active distribution network, IET Generation, Transmission and Distribution, vol. 9, no. 12, pp. 1455–1463 (2015).
- [6] Wang C. M., Sun W. Q., Yi T., Yan Z. M., Zhang Y., Review on Energy Storage Application Planning and Benefit Evaluation Methods in Smart Grid, Proceedings of CSEE, vol. 33, no. 7, pp. 33–41 (2013).
- [7] Luo X., Akhtar Z., Lee C. K., Chaudhuri B., Tan S. C., Hui S. Y. R., Distributed Voltage Control with Electric Springs: Comparison with STATCOM, IEEE Transactions on Smart Grid, vol. 6, no. 1, pp. 209–219 (2015).
- [8] Hui S. Y., Lee C. K., Wu F. F., Electric Springs – A New Smart Grid Technology, IEEE Transactions Smart Grid, vol. 3, no. 3, pp. 1552–1561 (2012).
- [9] Lee C. K., Hui S. Y. R., Reduction of Energy Storage Requirements in Future Smart Grid Using Electric Springs, IEEE Transactions on Smart Grid, vol. 4, no. 3, pp. 1282–1288 (2013).
- [10] Chaudhuri N. R., Lee C. K., Chaudhuri B., Hui S. Y. R., Dynamic Modeling of Electric Springs, IEEE Transactions on Smart Grid, vol. 5, no. 5, pp. 2450–2458 (2014).
- [11] Lee C. K., Chaudhuri N. R., Chaudhuri B., Hui S. Y. R., Droop Control of Distributed Electric Springs for Stabilizing Future Power Grid, IEEE Transactions on Smart Grid, vol. 4, no. 3, pp. 1558-1566 (2013).
- [12] Cheng M, Wang Q. S., Zhang J. Z., Theoretical Analysis and Controller Design of Electric Springs, Proceedings of CSEE. vol. 35, no. 10, pp. 2436-2444 (2015).
- [13] Lee C. K., Chaudhuri B., Hui S. Y., Hardware and Control Implementation of Electric Springs for Stabilizing Future Smart GridWith Intermittent Renewable Energy Sources, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 1, no. 1, pp. 18–27 (2013).
- [14] Wang Q., Cheng M., Chen Z., Steady-State Analysis of Electric Springs With a Novel Control, IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 7159–7169 (2015).
- [15] Chen X., Hou Y., Tan S. C., Lee C. K., Hui S. Y. R., Mitigating Voltage and Frequency Fluctuation in Microgrids Using Electric Springs, IEEE Transactions on Smart Grid, vol. 6, no. 2, pp. 508–515 (2015).
- [16] Zhao C. H., Ju R.,Wu H. X., Power Supply and Distribution System, China Electric Power Press (2009).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95cfa3b9-60ff-480d-bf00-90f51791e15c