PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis, microstructural evolution, and compaction behavior of Mg30-Al25-Ti25-Li15-Si5 lightweight high-entropy alloys synthesized via mechanical alloying

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this research work, Mg30-Al25-Ti25-Li15-Si5 lightweight high-entropy alloys (LWHEAs) were synthesized via mechanical alloying (MA) with different milling times of 0, 5, 10, and 20 h. The X-ray diffraction (XRD) results of MAed powders exhibited the formation of intermetallic phases (Mg2Si and Al12Mg17) and nanocrystalline structures with prolonged milling times, enhancing diffusion, lattice strain, and grain refinement. Scanning electron microscopy powder surface morphology, EDAX analyses, and elemental mapping were examined to confirm the structural refinement and uniform elemental distribution, though lithium detection remained challenging. Further, based on XRD results, peak broadening models (Scherrer, Williamson–Hall, and size–strain plot) were employed to estimate the crystallite size and lattice strain, with the Williamson–Hall model showing the highest accuracy. Compaction studies at room and high temperatures (275 and 550°C) with pressures up to 200 MPa demonstrated improved densification and mechanical integrity, attributed to the phase formation and structural refinement during milling. A relative density of 94.42% was achieved at 200 MPa and 550°C in the 20 h MAed sample due to improved atomic diffusion-driven densification, grain-boundary diffusion, and decreased work-hardening effect. The nanocrystalline nature, refined grain morphology, and enhanced densification emphasize the potential of Mg30-Al25-Ti25-Li15-Si5LWHEAs for lightweight structural applications in aerospace, automotive, and advanced manufacturing industries.
Wydawca
Rocznik
Strony
149--172
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, College of Engineering, Qassim University Buraidah, 51452, Saudi Arabia
  • Department of Mechanical Engineering, College of Engineering, Qassim University Buraidah, 51452, Saudi Arabia
  • Department of Mechanical Engineering, College of Engineering, Qassim University Buraidah, 51452, Saudi Arabia
Bibliografia
  • [1] Yeh, J.-W., Chen, S.-K., Lin, S.-J., Gan, J.-Y., Chin, T.-S., Shun, T.-T., et al., Nanostructured high entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 2004, 6: 299–303
  • [2] Ye, Y.F., Wang, Q., Lu, J., Liu, C.T., Yang, Y., High-entropy alloy: challenges and prospects, Mater. Today, 2016, 19: 349–362
  • [3] Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., et al., Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 2014, 61: 1–93
  • [4] Singh, A.K., Subramaniam, A., On the formation of disordered solid solutions in multi-component alloys, J. Alloy. Compd., 2014, 587, 113–119
  • [5] Yeh, J.W., Alloy design strategies and future trends in high-entropy alloys, JOM, 2013, 65: 1759–1771
  • [6] Zhao, Z.D., Chen, Q., Chao, H.Y., Huang, S.H., Microstructural evolution and tensile mechanical properties of thixoforged ZK60-Y magnesium alloys produced by two different routes, Mater. Des., 2010, 31: 1906–1916
  • [7] Li, C., Li, J.C., Zhao, M., Jiang, Q., Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys, J. Alloy. Compd., 2009, 475: 752–727
  • [8] Zhou, Y.J., Zhang, Y., Wang, Y.L., Chen, G.L., Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100-x high-entropy alloys, Mater. Sci. Eng. A., 2007, 454–455: 260–265
  • [9] Qu, Q., Xu, J., High-entropy alloy solder used for welding hard alloy and steel and preparation method thereof, Patent CN101554686-A, 2009
  • [10] Chen, K., Xu, J., Zhai, Q., High-entropy alloy brazing filler metal for welding TA2 and 0Cr18Ni9Ti and preparation method thereof, Patent CN101590574-A, 2009
  • [11] Chen, S.T., Tang, W.Y., Kuo, Y.F., Chen, S.Y., Tsau, C.H., Shun, T.T., et al., Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys, Mater. Sci. Eng. A., 2010, 527: 5818–5825
  • [12] Schubert, E., Klassen, M., Zerner, I., Walz, C., Sepold, G., Light-weight structures produced by laser beam joining for future applications in automobile and aerospace industry, J. Mater. Process. Technol., 2001, 115: 2–8
  • [13] Miller, W., Zhuang, L., Bottema, J., Wittebrood, A.J., De Smet, P., Haszler, A., et al., Recent development in aluminium alloys for the automotive industry, Mater. Sci. Eng. A., 2000, 280: 37–49
  • [14] Feng, R., Gao, M.C., Zhang, C., Guo, W., Poplawsky, J.D., Zhang, F., et al., Phase Stability and transformation in a light-weight high-entropy alloy, Acta Mater., 2018, 146: 280–293
  • [15] Wang, Z., Chen, S., Yang, S., Luo, Q., Jin, Y., Xie, W., et al., Light-weight refractory high-entropy alloys: a comprehensive review, J. Mater. Sci. Technol., 2023, 151: 41–65
  • [16] Tseng, K., Yang, Y., Juan, C., Chin, T., Tsai, C., Yeh, J., A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35, Sci. China Technol. Sci., 2018, 61: 184–188
  • [17] Miracle, D.B., Senkov, O.N., A critical review of high entropy alloys and related concepts, Acta Mater., 2017, 122: 448–511
  • [18] Jeong, I.S., Lee, J.H., Single-phase lightweight high-entropy alloys with enhanced mechanical properties, Mater. Des., 2023, 227: 111709
  • [19] Li, Y., Liao, W.-B., Chen, H., Brechtl, J., Song, W., Yin, W., et al., A low-density high-entropy dual-phase alloy with hierarchical structure and exceptional specific yield strength, Sci. China Mater., 2023, 66: 780–792
  • [20] Li, Y., Liaw, P.K., Zhang, Y., Microstructures and properties of the low-density Al15Zr40Ti28Nb12M(Cr, Mo, Si)5 high-entropy alloys, Metals, 2022, 12: 496
  • [21] Singh, N., Shadangi, Y., Shivam, V., Mukhopadhyay, N.K., MgAlSiCrFeNi low-density high entropy alloy processed by mechanical alloying and spark plasma sintering: Effect on phase evolution and thermal stability, J. Alloy. Compd., 2021, 875: 159923
  • [22] Xu, Z.Q., Maa, Z.L., Wang, M., Chen, Y.W., Tan, Y.D., Cheng, X.W., Design of novel low-density refractory high entropy alloys for high temperature applications, Mater. Sci. Eng. A., 2019, 755: 318–322
  • [23] Youssef, K.M., Zaddach, A.J., Niu, C., Irving, D.L., Koch, C.C., A novel low-density, high-hardness, high entropy alloy with close-packed single-phase nanocrystalline structures, Mater. Res. Lett., 2015, 3: 95–99
  • [24] Tseng, K., Yang, Y., Juan, C., Chin, T., Tsai, C., Yeh, J.W., A lightweight high-entropy alloy Al20Be20Fe10Si15Ti35, Sci. China Technol. Sci., 2018, 61: 184–188
  • [25] Yang, X., Chen, S.Y., Cotton, J.D., Zhang, Y., Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium, JOM, 2014, 66: 2009–2020
  • [26] Stepanov, N.D., Shaysultanov, D.G., Salishchev, G.A., Tikhonovsky, M.A., Structure and mechanical properties of a lightweight AlNbTiV high entropy alloy, Mater. Lett., 2015, 142: 153–155
  • [27] Hammond, V.H., Atwater, M.A., Darling, K.A., Nguyen, H.Q., Kecskes, L.J., Equal-channel angular extrusion of a low-density high-entropy alloy produced by high-energy cryogenic mechanical alloying, JOM, 2014, 66: 2021–2029
  • [28] Li, R., Gao, J., Fan, K., Study on microstructure and mechanical properties of Mg containing high entropy alloys, Mater. Sci. Forum., 2010, 650: 265–271
  • [29] Stepanov, N.D., Yurchenko, N.Y., Shaysultanov, D.G., Salishchev, G.A., Tikhonovsky, M.A., Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys, Mater. Sci. Technol., 2015, 31: 1184–1193
  • [30] Kumar, A., Gupta, M., An insight into evolution of lightweight high entropy alloys: a review, Metals, 2016, 6: 199
  • [31] Sivasankaran, S., Al-Mufadi, F.A., Ammar, H.R., Influence of V and Zn in FeCrCuMnTi high-entropy alloys on microstructures and uniaxial compaction behavior prepared by mechanical alloying, Crystals, 2021, 11: 1413
  • [32] Sivasankaran, S., Sherif, E.S.M., Ammar, H.R., Alaboodi, A.S., Mekky, A.B.H., Influence of oxide dispersions (Al2O3, TiO2, and Y2O3) in CrFeCuMnNi high-entropy alloy on microstructural changes and corrosion resistance, Crystals, 2023, 13: 605
  • [33] Soundararajan, R., Ramkumar, K.R., Sivasankaran, S., Kim, H.S., Enhancement of tensile strength in AA 6061-T6 plates joined by gas tungsten arc welding using high entropy alloy filler sheet, Mater. Sci. Eng. A., 2022, 832: 142481
  • [34] Sivasankaran, S., Ammar, H.R., Al-Mufadi, F.A., Continuous hot-compaction behavior of nanostructured FeCrCuMnTi-(V, Zn) high-entropy alloys, Mater. Manuf. Process., 2022, 37: 1122–1131
  • [35] Tian, Q., Zhang, G., Yin, K., Wang, W., Cheng, W., Wang, Y., The strengthening effects of relatively lightweight AlCoCrFeNi high entropy alloy, Mater. Charact., 2019, 151: 302–309
  • [36] Addepalli, S.N., Joladarashi, S., Ramesh, M.R., Arya, S.B., Effect of mechanical alloying on the microstructure of CoCrNiTiMo x high entropy alloy, J. Therm. Spray. Technol., 2022, 31: 1045–1055
  • [37] Sivasankaran, S., Sivaprasad, K., Narayanasamy, R., Satyanarayana, P.V., X-ray peak broadening analysis of AA 6061-100-x-x wt% Al2O3 nanocomposite prepared by mechanical alloying, Mater. Charact., 2011, 62: 661–672
  • [38] Zhang, Y., Wei, X., Zhang, W., Yuan, Z., Gao, J., Qi, Y., et al., Effect of milling duration on hydrogen storage thermodynamics and kinetics of Mg-based alloy, Int. J. Hydrog. Energy, 2020, 45: 33832–33845
  • [39] Han, Y., Chen, H., Sun, Y., Liu, J., Wei, S., Xie, B., et al., Ubiquitous short-range order in multi-principal element alloys, Nat. Commun., 2024, 15: 6486
  • [40] Gheiratmand, T., Madaah Hosseini, H.R., Davami, P., Ababei, G., Song, M., Mechanism of mechanically induced nanocrystallization of amorphous FINEMET ribbons during milling, Metall. Mater. Trans. A., 2015, 46: 2718–2725
  • [41] Toozandehjani, M., Matori, K.A., Ostovan, F., Abdul Aziz, S., Mamat, M.S., Effect of milling time on the microstructure, physical and mechanical properties of Al-Al2O3 nanocomposite synthesized by ball milling and powder metallurgy, Materials, 2017, 10: 1232
  • [42] Sivasankaran, S., Sivaprasad, K., Narayanasamy, R., Iyer, V.K., An investigation on flowability and compressibility of AA 6061-100-xx wt% TiO2 micro and nanocomposite powder prepared by blending and mechanical alloying, Powder Technol., 2010, 201: 70–82
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95cf88ee-11d5-4d37-b260-5996842e1ea7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.