PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seismogenic structures in Quaternary lacustrine deposits of Lake Van (eastern Turkey)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Soft-sediment deformation structures formed by liquefaction and/or fluidisation of unconsolidated sediments due to seismic shocks are frequent in the Quaternary sandy, silty and clayey deposits of Lake Van. They are present in both marginal and deep lacustrine facies. Their morphology and interpreted genesis imply that they should be considered as fluid-escape structures (dish and pillar structures, flame structures and sand volcanoes), contorted structures (simple and complex convolutions and ball-and-pillow structures) and other structures (disturbed layers and slump structures). The most recently formed structures are related to the October 23rd, 2011 Van-Tabanlı (Mw 7.2) earthquake. The exist-ence of seismites at various stratigraphic levels in the lacustrine deposits is indicative of tectonic activity that frequently triggered earthquakes with magnitudes of 5 or more, affecting the Lake Van Basin.
Czasopismo
Rocznik
Strony
79--87
Opis fizyczny
Bibliogr. 63 poz.
Twórcy
autor
  • Yüzüncü Yıl University, Dept. of Geological Engineering, 65080 Zeve Campus / Van, Turkey
Bibliografia
  • Acarlar, M., Bilgin, A.Z., Elibol, E., Erkan, T., Gedik, İ., Güner, E., Hakyemez, Y., Şen, A.M., Uğuz, M.F. & Umut, M., 1991. Van Gölü doğusu ve kuzeyinin jeolojisi [Geology of the eastern and northern part of Lake Van]. The Mineral Research and Exploration Institute of Turkey (MTA) Rept. 9469, 94 pp. (in Turkish).
  • Alan, H., Bozkurt, E., Çağlan, D., Dirik, K., Özkaymak, Ç., Sözbilir, H. & Topal, T., 2011. Van earthquakes report (Tabanlı and Edremit). Chamber of Turkish Geological Engineers Report 110, 48 pp.
  • Alfaro, P., Moretti, M. & Soria, J.M., 1997. Soft-sediment deformation structures induced by earthquakes (seismites) in Pliocene lacustrine deposits (Guadix-Baza Basin, central Betic Cordillera). Eclogae Geologicae Helvetiae 90, 531–540.
  • Allen, C.R., 1975. Geological criteria for evaluating seismicity. Geological Society of American Bulletin 86, 1041–1057.
  • Allen, J.R.L., 1986. Earthquake magnitude-frequency, epicentral distance and soft-sediment deformation in sedimentary basins. Sedimentary Geology 46, 67–75.
  • Ambraseys, N.N., 1988. Engineering seismology. Earthquake Engineering and Structural Dynamics 17, 1–105.
  • Atkinson, G., 1984. Simple computation of liquefaction probability for seismic hazard applications. Earthquake Spectra 1, 107–123.
  • Bhattacharya, H.N. & Bandyopadhyay, S., 1998. Seismites in a Proterozoic tidal succession, Singhbhum, Bihar, India. Sedimentary Geology 119, 239–252.
  • Bowman, D., Korjenkov, A. & Porat, N., 2004. Late-Pleistocene seismites from Lake Issyk-Kul, The Tien Shan range, Kyrghyztan. Sedimentary Geology 163, 211–228.
  • Chen, J. & Lee, H.S., 2013. Soft-sediment deformation structures in Cambrian siliciclastic and carbonate storm deposits (Shandong Province, China): differential liquefaction and fluidization triggered by storm-wave loading. Sedimentary Geology 288, 81–94.
  • Chen, J., Chough, S.K., Chun, S.S. & Han, Z., 2009a. Limestone pseudoconglomerates in the Late Cambrian Gushan and Chaomidian Formations (Shandong Province, China): soft-sediment deformation induced by storm-wave loading. Sedimentology 56, 1174–1195.
  • Chen, J., Van Loon, A.J., Han, Z. & Chough, S.K., 2009b. Funnel-shaped, breccia-filled clastic dykes in the Late Cambrian Chaomidian Formation (Shandong Province, China). Sedimentary Geology 221, 1–6.
  • Chen, J., Chough, S.K., Han, Z. & Lee, J.-H., 2011. An extensive erosion surface of a strongly deformed limestone bed in the Gushan and Chaomidian Formations (late Middle Cambrian to Furongian), Shandong Province, China: sequence–stratigraphic implications. Sedimentary Geology 233, 129–149.
  • Dasgupta, P., 1998. Recumbent flame structures in the Lower Gondwana rocks of the Jharia Basin, India – a plausible origin. Sedimentary Geology 119, 253–261.
  • Degens, E.T., Wong, H.K., Kempe, S. & Kurtman, F., 1984. A geological study of Lake Van, eastern Turkey. Geologische Rundschau 73–2, 701–734.
  • Degens, E.T., Wong, H.K., Kurtman, F. & Finckh, P., 1978. Geological development of Lake Van: a summary. [In:] E.T. Degens & F. Kurtman (Eds): The geology of Lake Van. The Mineral Research and Exploration Institute of Turkey (MTA) Publication 169, 134–146.
  • Fukuoka, M., 1971. Memories of earthquake and foundations. Bridges and Foundations 5, 1–10.
  • Galli, P. & Meloni, F., 1993. Nuovo catalogo dei processi di liquefazione avvenuti in occasione dei terremoti storici in Italia. Il Quaternario 6, 271–292 (in Italian).
  • He, B., Qiao, X., Jiao, C., Xu, Z., Cai, Z., Guo, X., Zhang, Y. & Zhang, M., 2014. Paleo-earthquake events in the late Early Palaeozoic of the central Tarim Basin: evidence from deep drilling cores. Geologos 20, 105–123.
  • Hempton, M.R., Dunne, L.A. & Dewey, J.F., 1983. Sedimentation in an active strike-slip basin, southeastern Turkey. Journal of Geology 91, 401–412.
  • Kempe, S., Khoo, F. & Gürleyik, Y., 1978. Hydrography of Lake Van and its drainage area. [In:] E.T. Degens & F. Kurtman (Eds): The geology of Lake Van. The Mineral Research and Exploration Institute of Turkey (MTA) Publication 169, 30–44.
  • Koçyiğit, A., 2013. New field and seismic data about the intraplate strike-slip deformation in Van region, East Anatolian plateau, E. Turkey. Journal of Asian Earth Sciences 62, 586–605.
  • Koçyiğit, A., Yılmaz, A., Adamia, S. & Kuloshvili, S., 2001. Neotectonic of East Anatolian Plateau (Turkey) and Lesser Caucasus: implication for transition from thrusting to strike-slip faulting. Geodinamica Acta 14, 177–195.
  • Kuzucuoğlu, C., Christol, A., Mouralis, D., Doğu, A.F., Akköprü, E., Fort, M., Brunstein, D., Zorer, H., Fontugne, M., Karabıyıkoğlu, M., Scaillet, S., Reyss, J.L. & Guillou, H., 2010. Formation of the Upper Pleistocene terraces of Lake Van. Journal of Quaternary Science 25, 1124–1137.
  • Litt, T., Krastel, S., Sturm, M., Kipfer, R., Örçen, S. & Çağatay, M.N., 2009. Van Gölü Sondaj Projesi ‘PALEOVAN’, Uluslararası Bilimsel Kıta Sondaj Programı (ICDP): Yaklaşan Derin Sondaj Seferi ve Bilimsel Hedefler. [Lake Van drilling project], 62. Türkiye Jeoloji Kurultayı Bildiri Özleri (Ankara), 718–719 (in Turkish).
  • Lowe, D.R., 1975. Water escape structures in coarse-grained sediments. Sedimentology 22, 157–204.
  • Molina, J.M., Alfaro, P., Moretti, M. & Soria, J.M., 1998. Soft-sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene, Guadalquivir basin, Spain). Terra Nova 10, 145–150.
  • Moretti, M. & Sabato, L., 2007. Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant ‘Arcangelo Basin (southern Italy): seismic shock vs. overloading. Sedimentary Geology 196, 31–45.
  • Moretti, M. & Van Loon, A.J., 2014. Restrictions to the application of ‘diagnostic’ criteria for recognizing ancient seismites. Journal of Palaeogeography 3, 13–24.
  • Moretti, M., Alfaro, P., Caselles, O. & Canas, J.A., 1999. Modelling seismites with a digital shaking table. Tectonophysics 304, 369–383.
  • Moretti, M., Pieri, P., Tropeano, M. & Walsh, N., 1995. Tyrrhenian seismites in Bari area (Murge–Apulian foreland). Atti dei Convegni Licenci 122, Terremoti in Italia, Roma 1–2/12, 211–216.
  • Obermeier, S.F., 1996. Use of liquefaction-induced features for paleoseismic analysis – an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology 44, 1–76.
  • Obermeier, S.F., 1998. Liquefaction evidence for strong earthquakes of Holocene and latest Pleistocene ages in the states of Indiana and Illinois, USA. Engineering Geology 50, 227–254.
  • Obermeier, S.F., Jacobson, R.B., Smott, J.P., Weems, R.E., Gohn, G.S., Monroe, J.E. & Powards, D.S., 1989. Earthquake-induced liquefaction features in the coastal setting of south Carolina and the fluvial setting of the New Madrid seismic zone. United States Geological Survey Professional Paper 1504, 44 pp.
  • Özkaymak, Ç., Sözbilir, H., Bozkurt, E., Dirik, K., Topal, T., Alan, H. & Çağlan, D. 2012. 23 Ekim 2011 Tabanlı-Van Depreminin Sismik Jeomorfolojisi ve Doğu Anadolu’daki Aktif Tektonik Yapılarla İlişkisi [Seismic geomorphology of the October 23, 2011 Tabanlı-Van earthquake and its relation to active tectonics of East Anatolia]. Jeoloji Mühendisliği Dergisi 35, 175–199 (in Turkish).
  • Perucca, L.P., Godoy, E. & Pantano, A., 2014. Late Pleistocene-Holocene earthquake-induced slumps and soft-sediment deformation structures in the Acequion River valley, Central Precordillera, Argentina. Geologos 20, 147–156.
  • Plaziat, J.C. & Ahmamou, M., 1998. Les differents mécanismes a l’origine de la diversité des seismites, leur identification dans le Pliocene du Saiss de Fes et de Meknes (Maroc) et leur signification tectonique. Geodinamica Acta 11, 183–203.
  • Ricci Lucchi, F., 1995. Sedimentological indicators of paleoseismicity. [In:] L. Serva & D.B. Slemmons (Eds): Perspectives in paleoseismology. Association of Engineering Geologists Special Publication 6, 7–17.
  • Ringrose, P.S., 1989. Paleoseismic (?) liquefaction event in late Quaternary lake sediment at Glen Roy, Scotland. Terra Nova 1, 57–62.
  • Rodríguez-Lopez, J.P., Merléndez, N., Soria, A.R., Liesa, C.L. & Van Loon, A.J., 2007. Lateral variability of ancient seismites related to differences in sedimentary facies (the syn-rift Escucha Formation, mid-Cretaceous, Spain). Sedimentary Geology 201, 461–484.
  • Rodriguez-Pascua, M.A., Calvo, J.P., De Vicente, G. & Gómez-Gras, D., 2000. Soft sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene. Sedimentary Geology 135, 117–135.
  • Rossetti, D.F., 1999. Soft-sediment deformational structures in late Albian to Cenomanian deposits, Sao Luis Basin, northern Brazil: evidences for paleoseismicity. Sedimentology 46, 1065–1081.
  • Sarkar, S., Choudhuri, A., Banerjee, S., Van Loon, A.J. & Bose, P.K., 2014. Seismic and non-seismic soft-sediment deformation structures in the Proterozoic Bhander Limestone, central India. Geologos 20, 89–103.
  • Scott, B. & Price, S., 1988. Earthquake-induced structures in young sediments. Tectonophysics 147, 165–170.
  • Seed, H.B. & Idriss, I.M., 1982. Ground motions and soil liquefaction during earthquakes. Earthquake Engineering Research Institute (Berkeley), 134 pp.
  • Seilacher, A., 1969. Fault-graded beds interpreted as seismites. Sedimentology 13, 155–159.
  • Seilacher, A., 1984. Sedimentary structures tentatively attributed to seismic events. Marine Geology 55, 1–12.
  • Sims, J.D., 1975. Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics 29, 141–152.
  • Spence, G.H. & Tucker, M.E., 1997. Genesis of limestone megabreccias and their significance in carbonate sequence stratigraphic models: a review. Sedimentary Geology 112, 163–193.
  • Şaroğlu, F. & Yılmaz, Y., 1986. Doğu Anadolu’da neotektonik dönemdeki jeolojik evrim ve havza modelleri [Geological evolution and basin models of the neotectonic period at Eastern Anatolia]. Maden Tetkik ve Arama Dergisi 107, 73–94 (in Turkish).
  • Şengör, A.M.C. & Yılmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75, 181–241.
  • Taşgın, C.K. & Türkmen, İ., 2009. Analysis of soft-sediment deformation structures in Neogene fluvio-lacustrine deposits of Çaybağı formation, eastern Turkey. Sedimentary Geology 218, 16–30.
  • Üner, S., Yeşilova, Ç., Yakupoğlu, T. & Üner, T., 2010. Pekişmemiş sedimanlarda depremlerle oluşan deformasyon yapıları (sismitler): Van Gölü Havzası, Doğu Anadolu [Earthquake-induced soft-sediment deformation structures (seismites): Van Gölü Basin, eastern Anatolia]. Bulletin for Earth Sciences 31, 53–66.
  • Valente, A., Ślącka, A. & Cavuoto, G., 2014. Soft-sediment deformation in Miocene deep-sea clastic deposits (Cilento, southern Italy). Geologos 20, 67–78.
  • Van Loon, A.J., 2002. Soft-sediment deformations in the Kleszczów Graben (central Poland). Sedimentary Geology 147, 57–70.
  • Van Loon, A.J., 2009. Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos 15, 3–55.
  • Van Loon, A.J., 2014a. The life cycle of seismite research. Geologos 20, 61–66.
  • Van Loon, A.J., 2014b. The Mesoproterozoic ‘seismite’ at Laiyuan (Hebei Province, E China) re-interpreted. Geologos 20, 139–146.
  • Van Loon, A.J. & Maulik, P., 2011. Abraded sand volcanoes as a tool for recognizing paleo-earthquakes, with examples from the Cisuralian Talchir Formation near Angul (Orissa, eastern India). Sedimentary Geology 238, 145–155.
  • Van Loon, A.J. & Mazumder, R., 2011. Can once lithified rocks later undergo soft-sediment deformation? Sedimentary Geology 238, 101–105.
  • Van Loon, A.J., Han, Z. & Han, Y., 2013. Origin of vertically oriented clasts in brecciated shallow-marine limestones of the Chaomidian Formation (Furongian, Shandong Province, China). Sedimentology 60, 1059–1070.
  • Van Loon, A.J. & Pisarska-Jamrozy, M., 2014. Sedimentological evidence of Pleistocene earthquakes in NW Poland induced by glacio-isostatic rebound. Sedimentary Geology 300, 1–10.
  • Visher, G.S. & Cunningham, R.D., 1981. Convolute laminations – a theoretical analysis: example of Pennsylvanian sandstone. Sedimentary Geology 28, 175–189.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95cbf54b-d8d0-4b2b-9c98-c49002909e54
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.