PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Azo dye wastewater treatment in a novel three-dimensional electrode reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel three-dimensional electrode reactor (3DER) was designed to treat the dye wastewater. The performance of 3DER was evaluated via methyl orange (MO) removal efficiency. For comparison, the performance of the two-dimensional electrode reactor (2DER) was also assessed. Furthermore, the effects of electrolyte and aeration on treatment performance were preliminarily evaluated to further optimize the operation on 3DER. A repeatable and stable MO treatment efficiency was obtained in the 3DER. The MO removal rate reached 79.5% at the applied voltage of 1.0 V, electrode spacing of 2 cm and initial MO concentration of 60 mg/dm3, significantly higher than that in the 2DER (58.8%), suggesting the obvious improvement of particle electrodes on MO removal. Both adding electrolyte and air sparging into the 3DER contributed to the enhancement of the MO removal rate. These results obtained here suggest that the 3DER may provide an effective alternative for the treatment of azo dye wastewater and/or non-biodegradable industrial wastewaters.
Rocznik
Strony
5--13
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
  • Department of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, Anhui, China
autor
  • Department of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, Anhui, China
  • Department of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, Anhui, China
autor
  • Department of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, Anhui, China
Bibliografia
  • [1] NAWAZ N., ALI S., SHABIR G., RIZWAN M., SHAKOOR M.B., SHAHID M.J., AFZAL M., ARSLAN M., HASHEM A., ABD ALLAH E.F., Bacterial augmented floating treatment wetlands for efficient treatment of synthetic textile dye wastewater, Sustain., 2020, 12 (9), 3731. DOI: 10.3390/su12093731.
  • [2] FRANCA R.D.G., VIEIRA A., MATA A.M.T., CARVALHO G.S., PINHEIRO H.M., LOURENÇO N.D., Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater, Water Res., 2015, 85, 327. DOI: 10.1016/j.watres.2015.08.043.
  • [3] BAKHEET B., YUAN S., LI Z., WANG H., ZUO J., KOMARNENI S., WANG Y., Electroperoxone treatment of Orange II dye wastewater, Water Res., 2013, 47 (16), 6234. DOI: 10.1016/j.watres.2013.07.042.
  • [4] AHMAD A., MOHD-SETAPAR S.H., CHUONG C.S., KHATOON A., WANI W.A., KUMAR R., RAFATULLAH M., Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater, Rsc. Adv., 2015, 5 (39), 30801. DOI: 10.1039/C4RA16959J.
  • [5] LI W., MU B., YANG Y., Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology, Biores. Technol., 2019, 277, 157. DOI: 10.1016/j.biortech.2019.01.002.
  • [6] ADAM R.E., POZINA G., WILLANDER M., NUR O., Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH, Phot. Nanostr., 2018, 32, 11. DOI: 10.1016/j.photonics.2018.08.005.
  • [7] BHARTI V., VIKRANT K., GOSWAMI M., TIWARI H., SONWANI R.K., LEE J., TSANG D.C., KIM K., SAEED M., KUMAR S., Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media, Environ. Res., 2019, 171, 356. DOI: 10.1016/j.envres.2019.01.051.
  • [8] JOSEPH J., RADHAKRISHNAN R.C., JOHNSON J.K., JOY S.P., THOMAS J., Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate, Mater. Chem. Phys., 2020, 242, 122488. DOI: 10.1016/j.matchemphys.2019.122488.
  • [9] CUI M., LIU W., TANG Z., CUI D., Recent advancements in azo dye decolorization in bio-electrochemical systems (BESs): Insights into decolorization mechanism and practical application, Water Res., 2021, 203, 117512. DOI: 10.1016/j.watres.2021.117512.
  • [10] GRACEPAVITHRA K., KUMAR P.S., JAIKUMAR V., SUNDARRAJAN P., A review on three-dimensional electrochemical systems: analysis of influencing parameters and cleaner approach mechanism for waste- water, Rev. Environ. Sci. Bio/Technol., 2020, 19, 873. DOI: 10.1007/s11157-020-09550-0.
  • [11] ZOU H., WANG Y., Azo dyes wastewater treatment and simultaneous electricity generation in a novel process of electrolysis cell combined with microbial fuel cell, Biores. Technol., 2017, 235, 167. DOI: 10.1016/j.biortech.2017.03.093.
  • [12] LI H., SONG H., XU H., LU Y., ZHANG S., YANG Y., YANG X., LU Y., Effect of the coexposure of sulfadiazine, ciprofloxacin and zinc on the fate of antibiotic resistance genes, bacterial communities and functions in three-dimensional biofilm-electrode reactors, Biores. Technol., 2020, 296, 122290. DOI: 10.1016/j.biortech.2019.122290.
  • [13] BAKALEM A., BOUHEZILA F., KITOUS O., DROUICHE M., MAMERI N., Performance of a new electro-chemical process using a three-dimensional microelectrode reactor, Int. J. Environ. Sci. Techn., 2021, 18, 3035. DOI: 10.1007/s13762-020-03071-7.
  • [14] GOPIRAMAN M., DENG D., KIM B., CHUNG I., KIM I.S., Three-dimensional cheese-like carbon nanoarchitecture with tremendous surface area and pore construction derived from corn as superior electrode materials for supercapacitors, Appl. Surf. Sci., 2017, 409, 52. DOI: 10.1016/j.apsusc.2017. 02.209.
  • [15] YAVUZ Y., SHAHBAZI R., Anodic oxidation of Reactive Black 5 dye using boron doped diamond anodes in a bipolar trickle tower reactor, Sep. Purif. Technol., 2012, 85, 130. DOI: 10.1016/j.seppur.2011. 10.001.
  • [16] PAN G., JING X., DING X., SHEN Y., XU S., MIAO W., Synergistic effects of photocatalytic and electro-catalytic oxidation based on a three-dimensional electrode reactor toward degradation of dyes in wastewater, J. Alloy. Compd., 2019, 809, 151749. DOI: 10.1016/j.jallcom.2019.151749.
  • [17] WU Z., CONG Y., ZHOU M., TAN T.E., p-Nitrophenol abatement by the combination of electrocatalysis and activated carbon, Chem. Eng. J., 2005, 106 (1), 83. DOI: 10.1016/j.cej.2004.10.009.
  • [18] ZHU X., NI J., XING X., LI H., JIANG Y., Synergies between electrochemical oxidation and activated carbon adsorption in three-dimensional boron-doped diamond anode system, Electrochim. Acta, 2011, 56 (3), 1270. DOI: 10.1016/j.electacta.2010.10.073.
  • [19] ZOU H., CHU L., WANG Y., Azo dye wastewater treatment in a novel process of biofilm coupled with electrolysis, Arch. Environ. Prot., 2019, 45 (3). DOI: 10.24425/aep.2019.128639.
  • [20] LIU S., SONG H., WEI S., LIU Q., LI X., QIAN X., Effect of direct electrical stimulation on decolorization and degradation of azo dye reactive brilliant red X-3B in biofilm-electrode reactors, Biochem. Eng. J., 2015, 93, 294. DOI: 10.1016/j.bej.2014.11.002.
  • [21] CHENG S., LIU H., LOGAN B.E., Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing, Environ. Sci. Technol., 2006, 40 (7), 2426. DOI: 10.1021/es051652w.
  • [22] WANG H.C., CUI D., YANG L.H., DING Y.C., CHENG H.Y., WANG A.J., Increasing the bio-electrochemical system performance in azo dye wastewater treatment: Reduced electrode spacing for improved hydrodynamics, Biores. Technol., 2017, 245, 962. DOI: 10.1016/j.biortech.2017.09.036.
  • [23] ZHU X., NI J., XING X., LI H., JIANG Y., Synergies between electrochemical oxidation and activated carbon adsorption in three-dimensional boron-doped diamond anode system, Electrochim. Acta, 2011, 56 (3), 1270. DOI: 10.1016/j.electacta.2010.10.073.
  • [24] PANIZZA M., MICHAUD P.A., CERISOLA G., COMNINELLIS C., Electrochemical treatment of wastewaters containing organic pollutants on boron-doped diamond electrodes: Prediction of specific energy con-sumption and required electrode area, Electrochem. Commun., 2001, 3 (7), 336. DOI: 10.1016 /S1388 -2481(01)00166-7.
  • [25] PANG T., WANG Y., YANG H., WANG T., CAI W., Dynamic model of organic pollutant degradation in three dimensional packed bed electrode reactor, Chemosphere, 2018, 206, 107. DOI: 10.1016/j.chemo sphere.2018.04.118.
  • [26] GUO C., LIU H., WANG C., ZHAO J., ZHAO W., LU N., QU J., YUAN X., ZHANG Y., Electrochemical removal of levofloxacin using conductive graphene/polyurethane particle electrodes in a three-dimensional reactor, Environ. Poll., 2020, 260, 114101. DOI: 10.1016/J.Envpol.2020.114101.
  • [27] WU X., YANG X., WU D., FU R., Feasibility study of using carbon aerogel as particle electrodes for decoloration of RBRX dye solution in a three-dimensional electrode reactor, Chem. Eng. J., 2008, 138, 47. DOI: 10.1016/j.cej.2007.05.027.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95c8020f-15dd-4613-9ae7-ffb885919592
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.