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The paper presents a comparative analysis of tortuosity calculations in
two types of 2D random geometries: with non-overlapping circles and with overlapping
squares. Both geometries were converted to binary geometries with different resolu-
tion. Next, simulations involving the Lattice Boltzmann Method were performed to
obtain velocity fields in a pore space. Based on the obtained velocity fields, Hydraulic
tortuosity and streamline tortuosity were calculated, based on the obtained velocity
fields, for all considered cases. Hydraulic tortuosity was calculated with the methodol-
ogy proposed by Koponen et al., whereas streamline tortuosity was determined with
the use of a new iterative algorithm. Two variants of the algorithm were proposed.
Additionally, the obtained results were compared with selected formulas from the
literature. The study demonstrated that calculations of streamlines exiting local inlet
velocity maxima are a good alternative to calculations where all possible streamlines
are taken into account. Computation time was significantly shorter and estimation
quality was comparable.
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1. Introduction

Tortuosity, in addition to porosity or a specific surface, is one of
the most important parameters characterising the spatial structure of a porous
medium. Tortuosity was introduced by Kozeny [1] to correct the value of the
hydraulic drop which occurs when a fluid flows through porous media. It was then
applied by Carman [2] as a correction factor of filtration velocity. Tortuosity is
defined as follows [3]:

(1.1) τ =
Lp
L0
,

where: τ – tortuosity [–], Lp – the actual path length inside pore channels [m],
L0 – thickness of the porous medium [m].

In general, path length Lp may be defined as a geometrical quantity (geomet-
ric tortuosity) or a flow property (hydraulic tortuosity or streamline tortuosity
– depending on the approach). Other kinds of tortuosity are also known (but
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not considered in the paper), including diffusional, electric or acoustic tortuos-
ity. It is important to note that pore space should form a connected network
through which a fluid can flow. If this requirement is not met, parameter Lp
cannot be calculated and loses its significance [4]. Tortuosity may be determined
with the use of empirical formulas, calculations based on a discrete velocity field
obtained for creeping flow, numerical algorithms which analyse pore channel ge-
ometry, or experimental data. The available methods have been reviewed in [5].

The available empirical formulas are simple to use, but the resulting tortu-
osity values are not very accurate. Our previous study [6] demonstrated that
such formulas may produce significantly different results for the same data. Tor-
tuosity ranged from 1.3654 to 1.6683 when calculated with empirical formulas
designed for densely packed beds. The relative error between these results was
almost 20%, which is quite significant. The comparison yielded 20 different em-
pirical formulas, seven of which were designed for granular beds.

The second approach involves a discrete velocity field obtained for creeping
flow. This field may be determined experimentally or with the use of numerical
simulations. The Finite Volume Method (FVM), Lattice Boltzmann Method
(LBM) and other methods may be applied in the latter case. The LBM approach
is particularly useful for modelling complex systems due to the ease of operating
on any complex geometry. If a velocity field is known, hydraulic tortuosity may
be calculated with the following formula [7–11]

(1.2) τ =
〈|v|〉
〈vx〉

,

where: |v| – modulus of local flow velocity, vx – X-component of local flow
velocity (where X is the direction of the main flow). Triangular brackets denote
the spatial average over a pore space. The described methodology, where the
discrete velocity field was obtained from LBM simulations, was proposed by
Koponen et al [10, 11]. In this approach, only one value of tortuosity is always
known, and it is representative of the entire porous medium. The cited authors
observed that “for a given obstacle configuration, the tortuosities calculated with
different lattice resolutions were always found to be close to each other, and no
systematic resolution effects were seen”.

The same velocity field may be used to calculate streamline tortuosity [12].
In this approach, the lengths of individual streamlines must be first calculated.
The average value of streamline tortuosity may be calculated as follows:

(1.3) τ =
1

ns

ns∑
i=1

Li
L0
,

where: ns – number of streamlines calculated for a velocity field [–], Li – length of
the i-th streamline [m]. In addition to one representative result, many individual
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values of streamline tortuosity can also be calculated, which is an advantage of
this approach. The range of tortuosity values or their distribution may be useful
when comparing two porous media with very similar average tortuosity.

In the context of the current article, it should be noted that details relating
to streamline calculations, such as the required number of streamlines or the lo-
cation of their origins, were not presented in [12]. The impact of lattice resolution
on streamline tortuosity was not discussed either. The cited authors investigated
velocity fields computed using the LBM in random pore systems that differed in
porosity and consisted of overlapping circles (in 2D) or spheres (in 3D).

Koponen et al. and Matyka et al. have proposed empirical formulas for cal-
culating tortuosity based on a porosity value. Another formula where tortuosity
is a function of porosity and the normalised size of elements forming the rigid
part of the solid body was proposed in [13]. The cited formulas are presented in
Table 1. Symbol |s| denotes the normalised size of a structural element [–] (size s
divided by the number of grid nodes in the main direction of flow). In the con-
text of the LBM, variable s denotes the size (length, width or the average value
of these quantities) of a single obstacle in lattice nodes. This variable may be
calculated directly when obstacles are rectangular in shape, or indirectly when
obstacles are not rectangular in shape or when obstacles overlap. In such a case,
the following formula may be applied:

(1.4) s = ndim

√
n1
ns
,

where: n1 – number of nodes marked as 1 in the geometry table [–] (details
in subsection 2.2), ns – number of structural elements (obstacles) in a porous
structure [–], ndim – number of the analysed dimensions (2 or 3).

Table 1. Formulas for calculating tortuosity in pore systems with known
porosity φ.

Source Formula Model constants
1 Koponen 1996 [10] τ = 1 + 0.8(1− φ) –
2 Koponen 1997 [11] τ = 1 + a 1−φ

(φ−φc)m
a = 0.65, m = 0.19, a = φc = 0.33

3 Matyka 2008 [14] τ = 1− pln(φ) p = 0.77± 0.03

4 Sobieski 2019 [13] τ = a
φb|s|c + d

φe|s|f
a = 1.1, b = 0.33, c = −0.01,
d = 5.3e08, e = 6.8, f = 2.86

Tortuosity can be also calculated with the use of numerical algorithms that
render the geometry of pore channels. These include the Path Tracking Method
[15, 16] and the Connected Paths Algorithm [17]. The first method was designed
to calculate geometrical tortuosity in granular beds composed of spherical or
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quasi-spherical particles. The second method may be applied to two-dimensional
binary images. Other methods based on the Random Walk technique [18] or the
A-Star Algorithm [19] have also been proposed. The Path Searching Algorithm
developed by the author in 2019 belongs to the same group of methods [13].

The main aim of the paper was to propose an approach for calculating stream-
line tortuosity where individual paths begin from local velocity maxima in the
inlet plane. This approach reduces the number of paths needed to calculate rep-
resentative tortuosity and decreases computation time. At the same time, the
quality of tortuosity estimation does not decrease significantly. The search for
faster methods of calculating tortuosity is important due to the emerging need
to analyse increasingly complex systems. It should be emphasised that this study
did not set out to investigate tortuosity as such. Such a goal would require an
analysis of a much higher number of porous structures with different porosity,
different obstacle shapes or obstacle size distributions.

The second aim of the present study was to compare the calculations of
hydraulic and streamline tortuosity for selected two-dimensional random systems
(similar to the systems used by Koponen et al. and Matyka et al.) and to test
the impact of grid resolution on tortuosity values. In this context, the present
study elaborates on the work done in [20], in which hydraulic tortuosity and
geometrical tortuosity for similar random systems were compared.

The third aim is related to formula (4) in Table 1. This formula was proposed
for two-dimensional random systems consisting of overlapping squares. Such sys-
tems as well as random systems composed of non-overlapping circles were also
investigated in this study. The applicability of the above formula for analysing
these types of porous media was also tested. In this context, the paper elaborates
on the work done in [13].

All software used in this study was created by the author. For this reason,
some information or solutions were shown in greater detail, in particular the self-
developed algorithm for calculating streamlines and the method of determining
local velocity extrema at the inlet.

2. Materials and methods

2.1. Geometry of pore structures

Two qualitatively different two-dimensional porous structures, i.e. circle-
based and square-based, were used in this study. Both geometries are only ex-
amples of porous systems and do not directly represent real-world matter. The
first system consists of randomly located and non-overlapping circles of different
size. Since the random function produces values in the range of 0 to 1, it can be
assumed that each direction of the domain has a unitary size (1 [m]). As a re-
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sult, any two numbers drawn in this way can be directly treated as the X and Y
coordinates of the centre of a circle. The diameter of each circle is also randomly
determined based on an average diameter calculated as follows:

(2.1) dave = 2

√
A(1− φ)

πnc
,

where: dave – average diameter calculated based on the assumed domain size and
porosity [m], A – area of the domain (in this case, equal to 1.0 [m2]), φ – target
porosity [–], nc – number of circles in the domain [–]. The diameter of the i-th
circle in the domain is calculated with the Monte Carlo method [21]:

(2.2) di = dave2

[
1

nd

nd∑
i=1

ri

]
,

where: di – diameter of the i-th circle [m], nd – number of random values adopted
in the model, ri – i-th random number [–]. If nd increases, the value in the
brackets tends to be 0.5, and the standard deviation of circle size distribution
decreases. Parameter nd was set to 25 to obtain a set of circles with a somewhat
different size.

It was also assumed that the circles cannot be grouped too closely. An ad-
ditional parameter (σ, set at 0.025 [m] in the considered case) was introduced
to determine the distance between circles during calculations. If the distance
between a newly inserted circle and any already existing circle was smaller than
σ, this circle was not considered and the drawing process was repeated. The
number of circles in the investigated example was set at 50. The porosity calcu-
lated by the applied algorithm was equal to 0.6387. The average diameter and
standard deviation of these particles were equal to 0.0941 [m] and 0.001873 [m],
respectively. A certain disadvantage of the proposed algorithm is that it cannot
be applied to generate systems with small porosity. Therefore, other algorithms,
such as those based on the Discrete Element Method, should be applied to gen-
erate systems with low porosities [22, 23].

The second system consisted of partially overlapping squares with a fixed
size. The algorithm was similar, but the distance between individual squares was
not taken into account. As a result, the squares may have common parts and
form complicated geometrical forms. The square had a side length of 0.05 [m].
Porosity was equal to 0.7995, and the system was composed of 97 squares. The
two geometries are discussed in subsequent sections of this paper (see Fig. 6).

It should be mentioned that random generated structures may have consistent
[10, 11, 14, 25] or inconsistent [8, 9, 24] geometry on opposite boundaries of the
domain. In the paper the second, potentially more problematic, case is chosen.
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However, it was not found that the lack of periodicity of the geometry caused
any computational difficulties.

2.2. Lattice Boltzmann Method

The discrete Boltzmann equation is solved to simulate the flow of fluid in
the Lattice Boltzmann Method. The Boltzmann equation may be saved as fol-
lows [26]:

(2.3)
∂f

∂t
+ v∇xf +

F

m
∇vf =

(
∂f

∂t

)
col

,

where: f(x,v, t) – the single-particle distribution function (where x is the co-
ordinate and v is microscopic velocity), F

m — uniform external forces,
(∂f
∂t

)
col

–
the collisional term. The function f(x,v, t) represents the probability (density)
of finding a given particle at a given location in the space x and time t with
a given velocity v.

The LBM algorithm involves two main steps: a) a streaming process, and
b) a collisional process. The streaming process may occur only between points
that are regularly arranged in the space and form a structural lattice. In this
type of lattice, gas can move in several directions which are represented by two
numbers. The first number denotes the number of dimensions in the space (D2
or D3). The second number represents the number of directions in which lattice
gas may move (e.g., Q27). The most popular LBM variants are D2Q9, D3Q15,
D3Q19 and D3Q27. The BGK model [24] offers the simplest approach to defining
the collisional term.

Equation (2.3) was implemented in the code in the following discrete form [27]:

(2.4) fi(x + ei∆t, t+ ∆t) = fi(x, t)−
1

τ
[fi(x, t)− feqi (x, t)],

where: feqi (x, t) is the equilibrium function

(2.5) feqi (x, t) = ρwi

(
1 + 3eiv

eq +
9

2
(eiv

eq)2 − 3

2
(veq)2

)
,

τ – relaxation time (the time required for the system to return to a state of
equilibrium after being disturbed), ei – the direction vector, ρ – lattice gas
density, wi – lattice weights (importance of a given direction). The right side of
Eq. (2.4) represents the BGK collisional model. A gas movement in the main
direction is forced by modifying the X-component of equilibrium velocity, which
is accomplished by adding a term with the external mass force F [27]:

(2.6) veqi,x = vi,x +
Fx
ρ
τ.
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If the values of the distribution function f(x,v, t) in each i-th direction are
known, macroscopic density and macroscopic velocity of lattice gas may be de-
termined with the following formulas [27]:

(2.7) ρ =

ni∑
i=0

fi

and

(2.8) v =
1

ρ

ni∑
i=0

fiei

where: ni – a number of spatial directions in the model (equal 8 in the D2Q9
model; 0 is referred to the current lattice node).

Equations (2.7) and (2.8) are applied to calculate lattice gas density and
lattice gas velocity. For the needs of this study, these values do not have to be
expressed in real units because any scale factor introduced to Eq. (1.2) does not
change the result. This approach was used by all the researchers mentioned in
Table 1.

2.3. Geometry conversion

In this study, the Lattice Boltzmann Method was used to obtain a velocity
field of lattice gas for creeping flow. However, to perform an LBM simulation,
the previously developed geometries have to be converted to a regular grid (in
this paper, the words “grid” and “lattice” are used interchangeably and do not
have separate meanings) of nodes identified by successive integer numbers. The
conversion concept is shown in Fig. 1. First, the real geometry must be covered
by a regular grid of points. Next, all points are assigned a value of zero or one,
depending on whether the point is located inside the pore part of the porous
medium or not. The obtained matrix of zeroes and ones defines the geometry in

Fig. 1. The concept of converting a real geometry to a lattice grid.
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the context of the LBM. The lattice for the circle-based geometry has a basic
resolution of 200×200. Smaller grid resolutions were not considered because the
width of individual pore channel cannot be less than 4 nodes [14]. In the analysed
case, the minimum pore channel width was equal to 5 nodes. In general, grids
with a coarser resolution can be included in the calculations, but a random
pore structure would have to be generated with other parameters. In this case,
the distance parameter σ in particular would have to be increased. The lattice
for a square-based geometry has a basic resolution of 100 × 100. In this case,
the width of pore channels may be limited to a single node due to the applied
generation procedure. For this reason, such grids must be refined before LBM
simulations are performed (refer to Subsection 3.1). It should be mentioned that
after LBM simulations, every node with a zero value in the geometry matrix
adopts a non-zero value of lattice gas velocity. In fact, the original matrix of
zeros and ones does not have to be available at this stage. Geometry may be
reconstructed on the basis of the velocity field.

Conversion a vector geometry to the binary geometry is always the lossy
conversion. The original geometry cannot be accurately reproduced from a binary
lattice of zeros and ones, especially in areas with curved surfaces, which are
represented in it, in a stair-shaped form. Curved shapes also may be applied in
LBM simulations, but more complicated boundary conditions at walls have to
be implemented [28, 29].

2.4. Calculation of streamlines from a discrete velocity field

In the discussed method, a discrete velocity field is normalised at the begin-
ning to obtain values between 0 and 1. For this purpose, every velocity compo-
nent in the entire velocity field is divided by the maximum value of the velocity
modulus. As a result, the maximum length of a velocity vector does not exceed
the distance between two neighbouring nodes. It was assumed that the locations
of grid nodes are identified by integer numbers. This grid may be defined as, for
example, a grid of nodes in the LBM or as a grid of cell centres in the FVM
or IBM. Only structural grids were used in this study, but other types of grids
may be also applied, such as experimentally derived discrete velocity fields. The
normalization process involves the following formulas:

(2.9) v̂ =
|v|
|vmax|

, v̂x =
vx
|vmax|

, v̂y =
vy
|vmax|

,

where: v̂ – normalised velocity modulus, |v| – velocity modulus, |v|max – max-
imum value of the velocity modulus, v̂x,y – normalised values of velocity com-
ponents [–], vx,y – values of velocity components. Velocity may be expressed by
physical units ([m/s]) or by lattice units (the approach used in this paper). The
normalised variables are non-dimensional.
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The locations (hereinafter referred to as Starting Points or SP) from which
streamlines should begin and the number of streamlines are determined in the
next step. Two cases were considered in this study. In the first case, streamlines
began from every node in the first row of the grid in a direction (Y ) perpendic-
ular to the direction of the main flow (X). Only nodes belonging to pore space
were considered. The maximum number of streamlines may be equal to grid res-
olution in the Y direction. In the second case, streamlines were calculated only
from nodes for which the inlet velocity profile reached a local maximum. The
following iterative procedures were developed for this purpose. First, the values
of the velocity modulus for the first column of grid nodes in an additional in-
dexed variable (one dimensional table) vinlet〈1 : ny〉 were remembered. Next, the
locations (indexes) of all extrema in this table were searched and remembered.
In the second step, two indexed variables were used: the previously mentioned
vinlet table and a new logical table (named flag〈1 : ny〉). At the beginning, all
elements of the logical table were set to FALSE. First, the location (index) of the
maximum value in the vinlet table was searched, and this value was set to zero.
At the same time, the element in the logical table with the same index was set
to TRUE. In the next iteration, the location of the maximum value in the vinlet
table was searched again. If the new location neighboured another extremum
(identified based on the corresponding elements of the logical table), the logical
value in the flag table was set to TRUE and a new search was initiated. Other-
wise, the new location would be regarded as yet another extremum. In both
cases, the velocity value of the current index was set to zero. The above proce-
dure is very easy to implement, and its main advantage is that mathematical
calculations are not required.

When a Starting Point (SP) was chosen, the velocity component in the main
direction of flow was checked. If vx ≥ 0, then its location was saved as the first
point of the current streamline (red point in Fig. 2). The location of the end
of the normalised velocity vector was regarded as the second point of the same
streamline (blue point in Fig. 2). To calculate the third path point (and every
next one), velocity components in the last path point must be known. They
may be calculated by interpolating the velocity field from the nodes forming
a square (grey area in Fig. 2b) inside which the current path point is located.
The appropriate weights must be taken into account because the influence of
particular nodes depends on distance. The weights are defined as follows:

(2.10) wi =
lsum

l̂i

1
lsum
l1

+ lsum
l2

+ lsum
l3

+ lsum
l4

,

where: l1−4 – distances between the current path point and the neighbouring
nodes [m], lsum = l1 + l2 + l3 + l4 – sum of distances l1−4 [m].
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The increase in the values of coordinates X and Y may be calculated as
follows:

(2.11)
dx =

w1v̂x,1 + w2v̂x,2 + w3v̂x,3 + w4v̂x,4
4

dy =
w1v̂y,1 + w2v̂y,2 + w3v̂y,3 + w4v̂y,4

4

where: v̂x,1−4 and v̂y,1−4 – components of normalised velocity in the neighbouring
nodes [–]. In the adopted approach, it does not matter whether the points forming
the current square belong to the pore space or to a solid body.

a) b)

Fig. 2. Diagram of the algorithm for calculating streamline coordinates: a) in a Starting
Point, b) in the second point of the path.

After the increase in the values of coordinates X and Y has been deter-
mined (2.11), the coordinates of the next streamline point (green point in Fig. 2b)
can be calculated as follows:

(2.12)

{
xi = xi−1 + dx,

yi = yi−1 + dy.

The operation of the proposed algorithm is presented on the example shown
in Fig. 3. The streamline follows the velocity vectors. The streamlines do not
cross each other, which confirms that the algorithm works correctly. The path
length (Lp) can be calculated after the coordinates of all constituent points have
been determined. Since the length of the domain in the main direction of flow
(L0) is also known (equal to nx − 1), tortuosity can be calculated for every
streamline and/or one average value representative of the entire velocity field.
The distribution of the obtained data may be also analysed.

The tests revealed that the proposed algorithm had to be refined, in particular
in the locations where velocity approached zero, including in the boundary layer.
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Fig. 3. Examples of algorithm operation: the first point of a streamline (left), and the i-th
point of a streamline (right).

In this case, the path moves very slowly, and the direction of the streamline is
usually lost due to the finite accuracy of a space discretization. It should be
noted that in the LBM, lattice nodes are uniformly distributed in space, even
close to the walls. This feature distinguishes the LBM from other approaches,
such as the FVM, where different near-wall meshes are used as the standard
solution to improve the quality of the results. In some cases, the path is directed
towards the walls, which is impossible in real-world systems. If any path projects
deeper into the imaginary line of the wall (dotted line in Fig. 4), the calculations
are interrupted and the current path is not taken into account. Such cases are
referred as a “dead end”. In some cases, a path is not directed towards the wall,
but reaches the stagnation area and becomes trapped. To eliminate such cases,
the number of path points is calculated. The calculations are terminated if the
number of path points exceeds the grid resolution in the main direction 100-
fold. Such a case is referred to as “looping”. Calculations are also interrupted if
a streamline returns and ultimately exits the domain thorough the inlet. This
exception is known as “reverse flow”. Cases where the velocity component of the
first point of the path is directed against the main direction of flow belong to
the same group.

a) b)

Fig. 4. Path penetration into: a) a flat wall, b) wall corner.

The periodic boundary conditions in the direction perpendicular to the main
direction of flow are implemented in the developed algorithm. As a result, the
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algorithm is consistent with LBM simulations (refer to Subsection 3.1). The
following periodic conditions may apply:

(2.13) if yi ≤ 1 then yi = ny

and

(2.14) if yi ≥ ny then yi = 1,

where yi denotes the Y coordinate of the current point of a streamline.
A different version of the algorithm had been previously tested. It was as-

sumed that a bouncing procedure should be applied if a path attempted to
penetrate a wall. The previously tested version of the algorithm produced highly
similar results to those described in the present study, but computation time
was several hundred times longer.

3. Results and discussion

3.1. Determination of discrete velocity fields

The LBM geometry obtained from the conversion procedure shown in Fig. 1
had to be refined to achieve the research objective. For this purpose, every in-
dividual node was replaced by a matrix of nodes with the same value (zero or
one) and a size equal to nr · nr where nr is the refinement factor. Five lattices
were developed for each geometry. The refinement factor ranged from 1 to 5 for
the circle-based geometry and from 4 to 8 for the square-based geometry. In the
second case, the condition relating to the minimum number of lattice nodes was
not fulfilled in the basic lattice. As a consequence, the refinement factor could
not be less than 4. Higher values of the refinement factor were not taken into ac-
count due to the significant increase in computational power needed to perform
LBM simulations. For example, in an input grid with a resolution of 200 × 200
and nr = 5, the final number of nodes is equal to one million. All calculations
were performed on a PC with an Intel Core 3.4 GHz processor, 32 GB RAM and
xUbuntu 18.04 OS.

In the next stage, an in-house numerical code was used to simulate creeping
flow through a pore structure with the use of the Lattice Boltzmann Method
and the D2Q9 BGK model. The periodic boundary condition was applied to
both directions. The no-slip conditions are specified at the walls. The external
mass force (refer to Eq. (2.6)) responsible for the movement of lattice gas was
equal to 0.0005 [lu]. This value of the external mass force was assigned to all
nodes of the numerical grid belonging to a pore space. Relaxation time was
constant and equal to 15. A different number of iterations was performed in every
case. Calculations were terminated if the absolute difference between the average
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values of the velocity modulus from two more iterations (ci = |vnave−vn−1ave |, where
ci is the convergence indicator and n is the number of iterations) was less than
the significant digits for double precision literals. The calculated values of the
convergence indicator for all simulations are shown in Fig. 5. Exemplary results
of LBM calculations are presented in Fig. 6.

Fig. 5. History of the convergence indicator for all lattices and circle-based (left) and
square-based (right) geometries.

Fig. 6. Velocity field for a circle-based geometry with 400× 400 grid resolution (left), and
a square-based geometry with 400× 400 grid resolution (right).

Taking into account the assumed time step and the spatial step, both equal
to 1, the maximum velocity noted in any lattice node, in considered geometries
was equal to 0.126 [m/s]. The kinematic viscosity for relaxation time used was
about 4.8 [m2/s]. By these values the Reynolds number did not exceed 0.005 in
all calculations.
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3.2. Determination of streamlines

The methodology presented in Subsection 2.4 may be applied when velocity
fields are available. Another numerical code, where the discrete velocity fields
obtained in LBM simulations were the input data, was developed and used in
this stage. The streamlines calculated from every boundary node for the circle-
based geometry with 400×400 lattice resolution are presented in Fig. 7. The
results of the second simulation involving the same geometry, but only selected
Starting Points, are presented in Fig. 8. The normalised velocity profile for the

Fig. 7. All streamlines derived for a circle-based geometry with 400× 400 grid resolution.

Fig. 8. Selected streamlines derived for a circle-based geometry with 400× 400 grid
resolution.
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first column of nodes is shown on the left. All Starting Points (local maxima of
the velocity profile) are marked with circles. A total of 25, 39, 40, 39 and 36 of
Starting Points were used for circle-based geometries with 200× 200, 400× 400,
600 × 600, 800 × 800 and 1000 × 1000 resolution, respectively. The results for
the square-based geometry are shown in Figs. 9 and 10. A total of 26, 24, 26, 22
and 20 Starting Points were used for squared-based geometries with 400× 400,

Fig. 9. All streamlines derived for a square-based geometry with 400× 400 grid resolution.

Fig. 10. Selected streamlines derived for a square-based geometry with 400× 400 grid
resolution.
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500 × 500, 600 × 600, 700 × 700 and 800 × 800 resolution, respectively. The
influence of the periodic boundary can be observed in all figures.

The data relating to the exceptions mentioned in Subsection 2.4 are presented
in Table 2. Symbols nSP and nCP denote the number of Starting Points and the
number of complete paths, respectively. The values of all Starting Points and
selected Starting Points (separated by / symbol) are indicated in each cell. In
some cells, the percentage of exceptions relating to the number of nSP is given
in parentheses. In some cases, the number of Starting Points was lower than
the resolution in the Y direction because only Starting Points located in pore
space were taken into account in path calculations. As expected, the number
of exceptions was higher in the square-based geometry because the presence of
overlapping obstacles contributed to the more complex shape of pore channels.
Exceptions occurred mainly in the paths exiting from Starting Points other than
SPs with local inlet velocity extrema.

Table 2. The number of exceptions in streamline calculations.

Grid
resolution nSP nCP “reverse flow” “dead end” “looping”

Circle-based
geometry:
all SPs /

selected SPs

200× 200 200 / 25 125 / 18 39 (19.5%) / 3 36 (18.0%) / 4 0 / 0
400× 400 400 / 39 347 / 33 36 (9.0%) / 5 16 (4.0%) / 1 1 / 0
600× 600 600 / 40 544 / 33 40 (6.7%) / 5 16 (2.7%) / 2 0 / 0
800× 800 800 / 39 761 / 33 29 (3.6%) / 5 10 (1.3 %) / 1 0 / 0

1000× 1000 1000 / 36 955 / 32 35 (3.5%) / 4 10 (1.0%) / 0 0 / 0

Square-based
geometry:
all SPs /

selected SPs

400× 400 360 / 26 285 / 25 42 (11.1%) / 0 32 (8.4%) / 1 1 / 0
500× 500 450 / 24 377 / 22 49 (10.9%) / 1 23 (5.1%) / 1 1 / 0
600× 600 540 / 26 469 / 23 57 (10.6%) / 1 14 (2.6%) / 2 0 / 0
700× 700 630 / 22 544 / 20 64 (10.2%) / 1 21 (3.3%) / 1 1 / 0
800× 800 720 / 20 640 / 19 64 (8.9%) / 1 15 (2.1%) / 0 1 / 0

Several causes of the exceptions may be identified: a) discrete form of the
input velocity field (dependent on the applied grid resolution); b) interpolation
of the velocity field from lattice nodes to other locations; c) limited number of
bits for data representation; d) rounding caused by data representation; e) cal-
culations performed on very small numbers. Causes a) and e) play the key role.

Calculation problems always occur in locations where the velocity field tends
to zero (when velocity components are relatively large, streamlines are calculated
quickly and have clear directions). In addition to the rarest grid for a circle-
based geometry, the percentage of “dead ends” is somewhat higher in square-
based geometries. The problem of “reverse flows” has a different character and
depends on the distribution of obstacles at the macro-scale. The percentage of
“reverse flows” is higher because square-based geometries have a more complex
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structure. The “looping” exception is relatively rarely encountered, but it is also
more frequently observed in square-based geometries.

The streamlines derived with the use of selected Starting Points are com-
pared in Fig. 11. The coordinates of all points forming individual streamlines
were normalised to obtain one uniform domain with a size of 1× 1. The stream-
lines calculated for different grid resolutions are similar, but not the same. The
streamlines for the circle-based geometry with 400 × 400 grid resolution have
a somewhat different shape than other streamlines. The normalised inlet veloc-

Fig. 11. Comparison of all streamlines for circle-based (left) and square-based (right)
geometries.

Fig. 12. Comparison of inlet velocity profiles for circle-based (left) and square-based (right)
geometries.
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ity profiles are compared in Fig. 12. In this case, the most outlying observation
was also made in the circle-based geometry for the coarsest lattice. The data ob-
tained for the square-based geometry were also very similar. The analysed cases
did not differ significantly.

As expected, the method involving selected Starting Points required less com-
putation time (Fig. 13). In all cases, pure calculation time appeared to increase
linearly as a function of the number of lattice nodes. For higher resolutions,
the increase in total computation time was probably caused by input-output
operations needed to save larger files.

Fig. 13. Comparison of computation times.

The method involving selected Starting Points decreased computation time in
circle-based geometries by 6.32, 8.82, 11.59, 14.34 and 19.92 for grid resolutions
200×200, 400×400, 600×600, 800×800 and 1000×1000, respectively. In turn, in
the square-based geometry, computation time decreased by a factor of 10.4, 11.5,
13.0, 15.2 and 17.6 for grid resolutions 400×400, 500×500, 600×600, 700×700
and 800×800, respectively. The decrease in computation time is significant, and
it constitutes the main advantage of the presented approach.

The available data for both geometries are compared in Figs. 14–15. Points
represent the individual values of tortuosity calculated for all streamlines with
known values of Lp. Grid resolutions are marked in different colours. In some
cases, the individual values of tortuosity range far from the average values de-
noted by coloured solid lines. Streamline tortuosity often forms distinct groups
with very similar values, which is a characteristic feature of the described ap-
proach. The above can be attributed to the fact that some neighbouring stream-
lines have very similar shapes, besides the section between the inlet line/plane
and the first obstacle (see Fig. 11). A path that begins near the centre of an
obstacle features more turns than a path which begins closer to the edge of the
obstacle.
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The results of streamline tortuosity (τs) calculations should be compared with
the data from other approaches (Table 3). In the first step, hydraulic tortuosity
(τh) was calculated for each available velocity field with the use of formula (1.2).

Fig. 14. Comparison of tortuosity for a circle-based geometry and all Starting Points.

Fig. 15. Comparison of tortuosity for a square-based geometry and all Starting Points.
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These values are represented by coloured dotted lines in Figs. 14 and 15. In
general, hydraulic tortuosity was lower than streamline tortuosity. This trend
is independent of a geometry type, and it is consistent with the results previ-
ously presented in [20]. The formulas shown in Table 1 (denoted by the same
numbers in Tables 1 and 3) were applied in the second step. These formulas
are independent of grid resolution or geometry type, and they always produce
only one value. The values of tortuosity calculated with the use of empirical
formulas are represented by black lines in Figs. 14 and 15. In Fig. 15, these
lines coincide; therefore, they were plotted in a separate chart. The degree of
convergence depends on the type of geometry. The presence of overlapping or
non-overlapping obstacles appears to play the key role in this case. In square-
based geometries, the values calculated with empirical formulas are highly similar
to each other as well as to hydraulic tortuosity values. The reason for the above
is that all formulas in Table 1 were developed based on LBM simulations (analy-
ses of hydraulic tortuosity) for similar square-based geometries with overlapping
obstacles. In circle-based geometries, empirical formulas always produce much
higher values of tortuosity than the remaining methods. This divergence could
be a general characteristic of pore structures with non-overlapping obstacles. In
Table 3, relative errors are additionally presented in brackets in relation to hy-
draulic tortuosity. The relative errors for streamline tortuosity were calculated
in relation to hydraulic tortuosity for the same lattice resolution. In empirical
formulas, relative errors were calculated in relation to hydraulic tortuosity for
the highest grid resolution.

3.3. Discussion

Ten lattices with different resolutions representing two porous structures were
analysed in this study. The Lattice Boltzmann Method was applied to every lat-
tice to simulate the creeping flow of lattice gas in pore channels. All simulations
were performed under the same conditions and at the same level of convergence.
After obtaining the velocity fields, streamlines were calculated in two variants.
The shape of the normalised inlet velocity profiles was very similar in every
case. The number of extrema and exceptions was also approximately constant,
excluding in the circle-based geometry and the resolution 200× 200. Despite the
fact that all pore channels had an appropriate width, lattice resolution was still
insufficient in this case.

Hydraulic and streamline tortuosity are compared in Fig. 16 as a function of
the number of grid nodes. The values generated by both methods were shifted
relative to each other, but they increased in a similar manner. The shift was
caused by the characteristic features of the applied methodology. The application
of all Starting Points in the calculations produces more consistent and smoothed
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Fig. 16. Comparison of tortuosity values in the two methods applied to circle-based (left)
and square-based (right) geometries.

results. However, streamline tortuosity for selected Starting Points may also be
used if only one representative value is needed and a relative error approximating
several percent is acceptable. The above approach was especially effective in the
circle-based geometry, where a relative error did not exceed one percent for all
lattice resolutions. It could be postulated that such an effect is characteristic of
pore structures with non-overlapping obstacles, where long, complex and isolated
channels do not occur. In fact, the exact value of tortuosity is unknown. In
the presented calculations, hydraulic tortuosity was used as the reference value.

Table 3. Average values of streamline tortuosity, hydraulic tortuosity and
tortuosity calculated with selected formulas.

Circle-based geometry Square-based geometry

τs

grid res. all SP chosen SP grid res. all SP chosen SP
200× 200 1.1484 (2.19%) 1.1176 (0.55%) 400× 400 1.1626 (2.76%) 1.1815 (4.43%)
400× 400 1.1350 (1.40%) 1.1128 (0.58%) 500× 500 1.1690 (2.84%) 1.1672 (2.68%)
600× 600 1.1358 (1.16%) 1.1142 (0.77%) 600× 600 1.1746 (2.89%) 1.1749 (2.92%)
800× 800 1.1414 (1.31%) 1.1292 (0.23%) 700× 700 1.1770 (2.70%) 1.1844 (3.34%)

1000× 1000 1.1454 (1.38%) 1.1238 (0.53%) 800× 800 1.1803 (2.62%) 1.1831 (2.86%)

τh

200×200 1.1238 400× 400 1.1314
400× 400 1.1193 500× 500 1.1367
600× 600 1.1228 600× 600 1.1416
800× 800 1.1266 700× 700 1.1461

1000× 1000 1.1298 800× 800 1.1502
(1) – 1.2858 (13.81%) – 1.1604 (0.89%)
(2) – 1.2896 (14.14%) – 1.1505 (0.03%)
(3) – 1.3404 (18.68%) – 1.1723 (1.92%)
(4) – 1.2430 (10.02%) – 1.1506 (0.03%)
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However, this is only an approximation, and the errors would be different if other
types of tortuosity, such as diffusional, electrical or acoustic tortuosity, were to be
adopted as the exact value. In fact, one or both of the analysed pore structures
could be even better represented by streamline tortuosity.

It can also be concluded that the empirical formulas in Table 1 are not ap-
propriate for porous structures other than those based on overlapping squares
or rectangles. Some of these formulas, in particular Eq. (1) and (2), are regarded
as universal equations in the literature. It seems that this issue should be em-
phasised in the literature.

Fig. 17. The relationship between normalised inlet velocity and tortuosity for circle-based
(left) and square-based (right) geometries.

The relationship between normalised inlet velocity and tortuosity for all
Starting Points is shown in Fig. 17. The dotted line represents the linear trends
of individual tortuosity values obtained for all grid resolutions. The fit was made
using the least squares method. The black line represents the average tortuos-
ity obtained for all Starting Points and the highest resolution. The shapes of
inlet velocity profiles result directly from the geometry of pore channels. If the
movement of lattice gas is not limited by obstacles, velocity increases and the
streamlines are relatively straight. In such cases, tortuosity values are lower, and
this trend is identical for both types of geometry. These trends are flattened
when grid resolution increases. These observations suggest that in highly com-
plex systems consisting of hundreds or thousands of obstacles, all paths will be
so long that all local deviations will be averaged and streamline tortuosity will be
independent of the local inlet velocity. Similar observations were made by other
authors, including Koponen et al. [11]. The cited authors concluded that simu-
lation quality depends on the relative scale between the size of the computational
domain and obstacle size. In the context of the paper, it should be noted that
the value of tortuosity may be somewhat underestimated in the method based
on selected Starting Points, in particular in relatively small systems. However,
underestimated values are closer to hydraulic tortuosity.
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The distribution of streamline tortuosity for all analysed lattices is shown in
Fig. 18. The average streamline tortuosity for the largest lattice is additionally
represented by a black line. The presence of tortuosity ranges with a very small
number of values is a characteristic feature of the proposed approach. This effect
can probably be attributed to the small scale of the sample. Greater variation in
the path length can be expected in larger porous systems. However, this could be
a unique feature of specific porous media which is determined by, for example, the
pore size distribution. This issue remains open. However, the relevant analyses
should involve methods that generate many local tortuosity values. It should
also be noted that the methodology based on hydraulic tortuosity and empirical
formulas cannot be applied for this purpose.

Fig. 18. Comparison of tortuosity distributions for circle-based (left) and square-based
(right) geometries.

The performed study well illustrates the main difficulties associated with
numerical analyses of porous structures. On the one hand, the analysed samples
and grid resolution should be as large as possible. On the other hand, however,
sample size and grid resolution cannot be too large due to limited computational
power. In this context, the attempt to find methods that produce satisfactory
results for larger systems while relying on the same computational power seems
to be fully justified.

4. Summary

The following conclusions can be formulated based on the presented results:
• The calculation of streamlines exiting from selected Starting Points is

a good alternative to calculations where all possible streamlines are taken
into account. Computation time is significantly shorter and estimation
quality is comparable. The proposed approach may be successfully applied
in calculations based on other algorithms that generate numerous paths,
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such as A-Star, Random Walking, Patch Searching Algorithm or the Path
Tracking Method.
• The advantage of the streamline-based approach is that many individual

values of tortuosity can be calculated, unlike in the methodology presented
by Koponen et al., where only one value can be determined at a time.
However, one tortuosity value representative of the entire porous medium
is still available.
• The study demonstrated that the values of hydraulic as well as streamline

tortuosity respond in similar manner to changes in network resolution. This
observation confirms that grid resolution is an important consideration that
is independent of the applied approach.
• The use of empirical formulas for tortuosity estimation is subject to great

uncertainty and risk, that the obtained result is very different from the
actual value. Particularly in cases, when any alternative data are not avail-
able.
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