PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radon‐wavelet based novel image descriptor for mammogram mass classification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mammography based breast cancer screening is very popular because of its lower costing and readily availability. For automated classification of mammogram images as benign or malignant machine learning techniques are involved. In this paper, a novel image descriptor which is based on the idea of Radon and Wavelet transform is proposed. This method is quite efficient as it performs well without any clinical information. Performance of the method is evaluated using six different classifiers namely: Bayesian network (BN), Linear discriminant analysis (LDA), Logistic, Support vector machine (SVM), Multilayer perceptron (MLP) and Random Forest (RF) to choose the best performer. Considering the present experimental framework, we found, in terms of area under the ROC curve (AUC), the proposed image descriptor outperforms, upto some extent, previous reported experiments using histogram based hand‐crafted methods, namely Histogram of Oriented Gradient (HOG) and Histogram of Gradient Divergence (HGD) and also Convolution Neural Network (CNN). Our experimental results show the highest AUC value of 0.986, when using only the carniocaudal (CC) view compared to when using only the mediolateral oblique (MLO) (0.738) or combining both views (0.838). These results thus proves the effectiveness of CC view over MLO for better mammogram mass classification.
Twórcy
  • Department of Informatics, University of Èvora, Rua Romão Ramalho, 59, 7000 671 Èvora, Portugal
autor
  • Department of Informatics, University of Èvora, Rua Romão Ramalho, 59, 7000 671 Èvora, Portugal
  • Department of Informatics, University of Èvora, Rua Romão Ramalho, 59, 7000 671 Èvora, Portugal
autor
  • Department of Informatics, University of Èvora, Rua Romão Ramalho, 59, 7000 671 Èvora, Portugal
Bibliografia
  • [1] “WHO, breast cancer”. http://www.who.int/cancer/prevention/diagnosisscreening/breast-cancer/en/, 2018. Accessed on: 2020‑09‑20.
  • [2] P. Skaane, S. Hofvind, and A. Skjennald, “Randomized trial of screen‑film versus full‑field digital mammography with soft‑copy reading in population‑based screening program: follow‑up and final results of Oslo II study”, Radiology, vol. 244, no. 3, 2007, 708–717, 10.1148/radiol.2443061478.
  • [3] E. D. Pisano, R. E. Hendrick, M. J. Yaffe, J. K. Baum, S. Acharyya, J. B. Cormack, L. A. Hanna, E. F. Conant, L. L. Fajardo, L. W. Bassett, C. J. D’Orsi, R. A. Jong, M. Rebner, A. N. A. Tosteson, and C. A. Gatsonis, “Diagnostic Accuracy of Digital versus Film Mammography: Exploratory Analysis of Selected Population Subgroups in DMIST”, Radiology, vol. 246, no. 2, 2008, 376–383, 10.1148/radiol.2461070200.
  • [4] J. Arevalo, F. A. González, R. Ramos‑Pollán, J. L. Oliveira, and M. A. Guevara Lopez, “Convolutional neural networks for mammography mass lesion classification”. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, 797–800, 10.1109/EMBC.2015.7318482, ISSN: 1558‑4615.
  • [5] J. Arevalo, F. A. González, R. Ramos‑Pollán, J. L. Oliveira, and M. A. Guevara Lopez, “Representation learning for mammography mass lesion classification with convolutional neural networks”, Computer Methods and Programs in Biomedicine, vol. 127, 2016, 248–257, 10.1016/j.cmpb.2015.12.014.
  • [6] D. C. Moura and M. A. Guevara Ló pez, “An evaluation of image descriptors combined with clinical data for breast cancer diagnosis”, International Journal of Computer Assisted Radiology and Surgery, vol. 8, no. 4, 2013, 561–574,10.1007/s11548‑013‑0838‑2.
  • [7] A. S. Constantinidis, M. C. Fairhurst, and A. F. R. Rahman, “A new multi‑expert decision combination algorithm and its application to the detection of circumscribed masses in digital mammograms”, Pattern Recognition, vol. 34, no. 8, 2001, 1527–1537, 10.1016/S0031‑3203(00)00088‑1.
  • [8] S. O. Belkasim, M. Shridhar, and M. Ahmadi, “Pattern recognition with moment invariants: A comparative study and new results”, Pattern Recognition, vol. 24, no. 12, 1991, 1117–1138, 10.1016/0031‑3203(91)90140‑Z.
  • [9] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features for Image Classification”, IEEE Transactions on Systems, Man,and Cybernetics, vol. SMC‑3, no. 6, 1973, 610–621, 10.1109/TSMC.1973.4309314, Conference Name: IEEE Transactions on Systems, Man, and Cybernetics.
  • [10] S. Yu and L. Guan, “A CAD system for the automatic detection of clustered microcalcifications in digitized mammogram films”, IEEE transactions on medical imaging, vol. 19, no. 2, 2000, 115–126, 10.1109/42.836371.
  • [11] A. Dhawan, Y. Chitre, and C. Kaiser‑Bonasso,“Analysis of mammographic microcalcifications using gray‑level image structure features”, IEEE Transactions on Medical Imaging, vol. 15, no. 3, 1996, 246–259, 10.1109/42.500063, Conference Name: IEEE Transactions on Medical Imaging.
  • [12] D. Wang, L. Shi, and P. Ann Heng, “Automatic detection of breast cancers in mammograms using structured support vector machines”, Neurocomputing, vol. 72, no. 13, 2009, 3296–3302, 10.1016/j.neucom.2009.02.015.
  • [13] S. Dua, H. Singh, and H. W. Thompson, “Associative classification of mammograms using weighted rules”, Expert Systems with Appliations, vol. 36, no. 5, 2009, 9250–9259, 10.1016/j.eswa.2008.12.050.
  • [14] B. Sahiner, H.‑P. Chan, N. Petrick, M. A. Helvie, and L. M. Hadjiiski, “Improvement of mammographic mass characterization using spiculation measures and morphological features”, Medical Physics, vol. 28, no. 7, 2001, 1455–1465, 10.1118/1.1381548.
  • [15] C. Mazo, E. Alegre, M. Trujillo, and V. González‑Castro, “Tissues Classification of the Cardiovascular System Using Texture Descriptors”. In: M. Valdés Hernández and V. González‑Castro, eds., Medical Image Understanding and Analysis, Cham, 2017, 123–132, 10.1007/978‑3‑319‑60964‑5_11.
  • [16] A. O’Neil, M. Shepherd, E. Beveridge, and K. Goatman. “A Comparison of Texture Features Versus Deep Learning for Image Classification in Interstitial Lung Disease”. In: M. Valdés Hernández and V. González‑Castro, eds., Medical Image Understanding and Analysis, volume 723, 743–753.Springer International Publishing, Cham, 2017.
  • [17] C. B. R. Ferreira and D. L. Borges, “Analysis of mammogram classification using a wavelet transform decomposition”, Pattern Recognition Letters, vol. 24, no. 7, 2003, 973–982, 10.1016/S0167‑8655(02)00221‑0.
  • [18] E. A. Rashed, I. A. Ismail, and S. I. Zaki, “Multiresolution mammogram analysis in multilevel decomposition”, Pattern Recognition Letters, vol. 28, no. 2, 2007, 286–292, 10.1016/j.patrec.2006.07.010.
  • [19] M. Meselhy Eltoukhy, I. Faye, and B. Belhaouari Samir, “A comparison of wavelet and curvelet for breast cancer diagnosis in digital mammogram”, Computers in Biology and Medicine, vol. 40, no. 4, 2010, 384–391, 10.1016/j.compbiomed.2010.02.002.
  • [20] R. Ramos‑Pollán, M. A. Guevara‑López, C. Suárez Ortega, G. Dı́az‑Herrero, J. M. Franco‑Valiente, M. Rubio‑Del‑Solar, N. González‑de Posada, M. A. P. Vaz, J. Loureiro, and I. Ramos, “Discovering mammography‑based machine learning classifiers for breast cancer diagnosis”, Journal of Medical Systems, vol. 36, no. 4, 2012, 2259–2269, 10.1007/s10916‑011‑9693‑2.
  • [21] S. R. Deans, The Radon transform and some of its applications, Wiley: New York, 1983.
  • [22] S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, 1989, 674–693, 10.1109/34.192463, Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence.
  • [23] C. Bielza, G. Li, and P. Larrañ aga, “Multidimensional classification with Bayesian networks”, International Journal of Approximate Reasoning, vol. 52, no. 6, 2011, 705–727, 10.1016/j.ijar.2011.01.007.
  • [24] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. Mullers, “Fisher discriminant analysis with kernels”. In: Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop, 1999, 41–48,10.1109/NNSP.1999.788121.
  • [25] “Logistic Regression ‑ ML Glossary documentation”. https://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html,2017. Accessed on: 2020‑09‑20.
  • [26] K. C. Santosh and S. Antani, “Automated Chest X‑Ray Screening: Can Lung Region Symmetry Help Detect Pulmonary Abnormalities?”, IEEE transactions on medical imaging, vol. 37, no. 5, 2018, 1168–1177, 10.1109/TMI.2017.2775636.
  • [27] “Breast Cancer Digital Repository”. https://bcdr.eu/information/about. Accessed on:2020‑09‑25.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95c72e65-35e9-45de-92fe-7985b2cc0123
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.