PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flexible strain sensor with good durability and anti-corrosion property based on metal/polymer composite films embedded with silver nanowires

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To avoid corrosion in sea water environment and conductive failures under external loads, a highly durable and anti-corrosion film with sandwich structure embedded with silver nanowires was fabricated as a flexible strain sensor. The effects of film size and ambient temperature on the conductivity of the sensor were studied separately. The silver nanowire-embedded strain sensor showed high durability and remained stable even after multiple bending. The PDMS coating could prevent the conductive layer from the external environment effectively. It is found that the sensor can be used effectively in sea water condition. Furthermore, the sensor connected on the steel sheet was applied in the real-time detection of microstrain in the tensile test, and the relationship between ΔR/R0 and strain illustrated high linear relationship and sensitivity. The good durability and anti-corrosion property of the conductive film showed the highly potential application to be used as a flexible strain sensor in salt-water condition.
Rocznik
Strony
528--534
Opis fizyczny
Bibliogr. 27 poz., fot., rys., wykr.
Twórcy
autor
  • Institute of Nanoengineering, College of Civil Engineering and Architecture, Shandong University of Science and Technology, Shandong 266590, China
autor
  • Institute of Nanoengineering, College of Civil Engineering and Architecture, Shandong University of Science and Technology, Shandong 266590, China
autor
  • Institute of Nanoengineering, College of Civil Engineering and Architecture, Shandong University of Science and Technology, Shandong 266590, China
autor
  • Institute of Nanoengineering, College of Civil Engineering and Architecture, Shandong University of Science and Technology, Shandong 266590, China
Bibliografia
  • [1] Xia H, Xia Y, Ye Y, Qian L, Member, IEEE, Shi G. Simultaneous wireless strain sensing and energy harvesting from multiple piezo-patches for structural health monitoring applications. IEEE Trans Ind Electron. 2019;66(10):8235–43.
  • [2] Negi P, Chhabra R, Kaur N, Bhalla S. Health monitoring of reinforced concrete structures under impact using multiple piezo-based configurations. Constr Build Mater. 2019;222:371–89.
  • [3] Bonopera M, Chang K-C, Chen C-C, Lee Z-K, Sung Y-C, Tullini N. Fiber brag grating–differential settlement measurement system for bridge displacement monitoring: case study. J Bridge Eng. 2019;24(10):05019011.
  • [4] Zhou Z, Wan C, Wen Bo, Li S, Zhao L, Jiang H. Structural damage detection with distributed long-gauge FBG sensors under multi-point excitations. Smart Mater Struct. 2019;28(9):095023.
  • [5] Li Y, Qing Wang Xu, Zheng YL, Luan J. Microcapsule encapsulated with leuco dye as a visual sensor for concrete damage indication via color variation. RSC Adv. 2020;10:1226.
  • [6] Zheng X, Wang Q, Li Y, Luan J, Wang N. Microcapsule-based visualization smart sensors for damage detection: principles and applications. Adv Mater Technol. 2020;5:1900832.
  • [7] Zhang R, Qing W, Zheng X. Flexible mechanochromic photonic crystals: Routes to visualised sensors and their mechanical properties. J Mater Chem C. 2018;6:3182–99.
  • [8] Krampikowska A, Pała R, Dzioba I, Swit G. The use of the acoustic emission method to identify crack growth in 40CrMo steel. Materials. 2019;12(13):2140.
  • [9] Wirtz SF, Beganovic N, Soffker D. Investigation of damage detectability in composites using frequency-based classification of acoustic emission measurements. Struct Health Monit. 2018;18(4):1207–18.
  • [10] Guo S, Zhang L, Chen S, Tan CKI, Yao K. Ultrasonic transducers from thermal sprayed lead-free piezoelectric ceramic coatings for in-situ structural monitoring for pipelines. Smart Mater Struct. 2019;28(7):075031.
  • [11] Hohlfeld K, Rhein S, Flössel M, Michaelis A, Gebhardt SE. Manu-facturing technologies of piezoelectric components for integration into lightweight structures. Adv Eng Mater. 2018;20(12):1800431.
  • [12] Wang L, Chen Y, Lin L, Wang H, Huang X, Xue H, Gao J. Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite. Chem Eng J. 2019;362:89–98.
  • [13] Wang L, Wang H, Huang X-W, Song X, Mingjun Hu, Tang L, Xue H, Gao J. Superhydrophobic and superelastic conductive rubber composite for wearable strain sensors with ultrahigh sensitivity and excellent anti-corrosion property. J Mater Chem A. 2018;6(47):24523–33.
  • [14] Chen J, Zhou W, Chen J, Fan Y, Zhang Z, Huang Z, Feng X, Mi B, Ma Y, Huang W. Solution-processed copper nanowire flexible transparent electrodes with PEDOT:PSS as binder, protector and oxide-layer scavenger for polymer solar cells. Nano Res. 2015;8(3):1017–25.
  • [15] Kim J, Park S-J, Nguyen T, Chu M, Pegan JD, Khine M. Highly stretchable wrinkled gold thin film wires. Appl Phys Lett. 2016;108(6):061901.
  • [16] Park D, Jeong J. Low-resistance stretchable electrodes using a thick silver layer and a PDMS-PDMS bonding technique. AIP Adv. 2019;9(2):025016.
  • [17] Wang N, Wang Q, Shuangshuang Xu, Zheng Xu. Mechanical stability of PDMS-based micro/nanotextured flexible superhydrophobic surfaces under external loading. ACS Appl Mater Interfaces. 2019;11:48583–93.
  • [18] Song Z, Weiyan Li Yu, Bao FH, Gao L, Jianan Xu, Ma Y, Han D, Niu Li. Breathable and skin-mountable strain sensor with tunable stretchability, sensitivity, and linearity via surface strain delocalization for versatile skin activities’ recognition. ACS Appl Mater Interfaces. 2018;10(49):42826–36.
  • [19] Wang C, Zhao J, Ma C, Sun J, Tian Li, Li X, Li F, Han X, Liu C, Shen C, Dong L, Yang J, Pan C. Detection of non-joint areas tiny strain and anti-interference voice recognition by micro-cracked metal thin film. Nano Energy. 2017;34:578–90.
  • [20] Xian HJ, Cao CR, Shi JA, Zhu XS, Hu YC, Huang YF, Meng S, Gu L, Liu YH, Bai HY, Wang WH. Flexible strain sensors with high performance based on metallic glass thin film. Appl Phys Lett. 2017;111(12):121906.
  • [21] Kim D-G, Kim J, Jung S-B, Kim Y-S, Kim J-W. Electrically and mechanically enhanced Ag nanowires-colorless polyimide composite electrode for flexible capacitive sensor. Appl Surf Sci. 2016;280:223–8.
  • [22] Hu L, Kim HS, Lee J-Y, Peumans P, Cui Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano. 2010;4(5):2955–63.
  • [23] Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I. Highly stretchable and sensitive strain sensor based on silver nanowire elastomer nanocomposite. ACS Nano. 2014;8(5):5154–63.
  • [24] Zhao Y, Huang Y, Wei Hu, Guo X, Wang Y, Liu P, Liu C, Zhang Y. Highly sensitive flexible strain sensor based on threadlike spandex substrate coating with conductive nanocomposites for wear-able electronic skin. Smart Mater Struct. 2019;28(3):035004.
  • [25] Zhang Qi, Wei W, Li J, Wei J, Guo J. Insertion of a biocompatible polymer bewteen graphene and silver nanowires for novel flexible transparent electrode. Synth Met. 2016;221:192–200.
  • [26] Oliva-Avilés AI, Avilés F, Sosa V. Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field. Carbon. 2011;49:2989–97.
  • [27] Tao Xu, Qiu Q, Shaowei Lu, Ma K, Wang X. Multi-direction health monitoring with carbon nanotube film strain sensor. Int J Distrib Sens Netw. 2019;15(2):155014771982968.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95c60a07-5390-4f9a-b18d-1f70e6c64c79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.