PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Antiradical properties of chemo drug, carboplatin, in cooperation with ZnO nanoparticles under UV irradiation in putative model of cancer cells

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main objective of this study was to assess the antiradical properties of zinc oxide (ZnO) nanoparticles upon exposure to ultraviolet radiation with carboplatin, an anti-proliferative drug used in the treatment of retinoblastoma. For the purpose of this study, the decomposition of 2,2(diphenyl-1-picryhydrazyl) radical (DPPH*) was used to assess the free radical capacity of antioxidants and was followed by MTT measurements. To test the antiradical capacity, the effective concentration, antiradical power, stoichiometry, and number of reduced DPPH* were investigated. DPPH* has a peak absorbance at a wavelength of 515 nm, which disappears upon the introduction of the antiradical agents. Four agents were reacted with DPPH* and represented the possible reaction kinetic categories. ZnO nanoparticles and carboplatin-loaded ZnO nanoparticles reacted more strongly with DPPH* and approached a saturation state at 420 min. The remaining two antiradical agents, ZnO nanoparticles under UV radiation and carboplatin-loaded ZnO nanoparticles under UV radiation, reacted a bit slower with DPPH* and approached a steady state at 1440 min. Among the different four antiradical agents, carboplatin-loaded ZnO nanoparticles under UV light had the highest antiradical response with the lowest effective concentration value to the reduced DPPH* molecules. ZnO nanoparticles alone were found to be poor antiradical agent. Possible mechanisms were attributed to the number of hydroxyl groups available to decrease the number of DPPH*.
Słowa kluczowe
Twórcy
  • Biomedical Physics Research Unit, Department of Physics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
  • Biomedical Physics Research Unit, Department of Physics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
  • Department of Physics, Faculty of Science, Silpakorn University, Nakornpathom, Thailand
  • Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Bangkok, Thailand
  • Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Bangkok, Thailand
  • Biomedical Physics Research Unit, Department of Physics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
  • Biomedical Physics Research Unit, Department of Physics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
  • Biomedical Physics Research Unit, Department of Physics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
Bibliografia
  • [1] American Society of Clinical Oncology, Retinoblastoma - Childhood: Statistics. www.cancer.net (assessed on 08/2019).
  • [2] Yang Q, Tripathy A, Yu W, Eberhart CG, Asnaghi L. Hypoxia inhibit growth, proliferation, and increases response to chemotherapy in retinoblastoma cells. Exp Eye Res 2017;162:48–61.
  • [3] Jo DH, Lee K, Kim JH, Jun HO, Kim Y, Cho YL, et al. L1 increases adhesion-mediated proliferation and chemoresistance of retinoblastoma. Oncotarget 2017;8 (9):15441–52.
  • [4] Ahmed F, Ali MJ, Kondapi AK. Carboplatin loaded protein nanoparticles exhibit improve anti-proliferative activity in retinoblastoma cells. Int J Biol Macromol 2014;70:572–82.
  • [5] Kang SJ, Durairaj C, Kompella UB, O'Brien JM, Grossniklaus HE. Subconjunctival nanoparticle carboplatin in the treatment of murine retinoblastoma. Arch Ophthalmol 2009;127(8):1043–7.
  • [6] Francis JH, Gobin YP, Dunkel IJ, Marr BP, Brodie SE, Jonna G, et al. Carboplatin +/- topotecan ophthalmic artery chemosurgery for intraocular retinoblastoma. PLoS One 2013;8(8):e72441.
  • [7] Shome D, Kalita D, Jain V, Sarin R, Maru GB, Bellare JR. Carboplatin loaded polymethylmethacrylate nano-particles in an adjunctive role in retinoblastoma: an animal trial. Indian J Ophthalmol 2014;62(5):585–9.
  • [8] Kalita D, Shome D, Jain VG, Chadha K, Bellare JR. In vivo intraocular distribution and safety of periocular nanoparticle carboplatin for treatment of advanced retinoblastoma in humans. American J Ophthalmol 2014;157(5):1109–15.
  • [9] Wozniak A, Rapacka-Zdonczyk A, Mutters NT, Grinholc M. Antimicrobials are a photodynamic inactivation adjuvant for the eradication of extensively drug-resistant Acinetobacter baumannii. Front Microbiol 2019;10:229.
  • [10] Yang MY, Chang KC, Chen LY, Wang PC, Chou CC, Wu ZB, et al. Blue light irradiation triggers the antimicrobial potential of ZnO nanoparticles on drug-resistant Acinetobacter baumannii. J Photochem Photobiol B 2018;180:235–42.
  • [11] Lu PJ, Fang SW, Cheng WL, Huang SC, Huang MC, Cheng HF. Characterization of titanium dioxide and zinc oxide nanoparticles in sunscreen powder by comparing different measurement methods. J Food Drug Anal 2018;26(3):1192–200.
  • [12] Ancona A, Dumontel B, Garino N, Demarco B, Chatzitheodoridou D, Fazzini W, et al. Lipid-coated zinc oxide nanoparticles as innovative ROS-generators for photodynamic therapy in cancer cells. Nanomaterials (Basel) 2018;8(3):e143.
  • [13] Chacko BJ, Palanisamy S, Gowrishankar NL, Honeypriya J, Sumathy A. Effect of surfactant coating on brain targeting polymeric nanoparticles; a review. Indian J Pharm Sci 2018;80(2):215–22.
  • [14] Martínez-Carmona M, Gun'ko Y, Vallet-Regí M. ZnO nanostructures for drug delivery and theranostic applications. Nanomaterials (Basel) 2018;8(4):e268.
  • [15] Jiang J, Pi J, Cai J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl 2018;20181062562.
  • [16] Babu EP, Subastri A, Suyavaran A, Premkumar K, Sujatha V, Aristatile B, et al. Size dependent uptake and hemolytic effect of zinc oxide nanoparticles on erythrocytes and biomedical potential of ZnO-ferulic acid conjugates. Sci Rep 2017;7:4203.
  • [17] Duan X, He C, Kron SJ, Lin W. Nanoparticle formulations of cisplatin for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016;8(5):776–91.
  • [18] Bogdan J, Plawinska-Czarnak J, Zarzynska J. Nanoparticles of titanium and zinc oxides as novel agents in tumor treatment: a review. Nanoscale Res Lett 2017;12:225.
  • [19] Bisht G, Rayamajhi S. ZnO nanoparticles: a promising anticancer agent. Nanobiomed 2016;3:9.
  • [20] Karanam V, Marslin G, Krishnamoorthy B, Chellan V, Siram K, Natarajan T, et al. Poly (e-caprolactone) nanoparticles of carboplatin: preparation, characterization and in vitro cytotoxicity evaluation in U-87 MG cell lines. Colloids Surf B Biointerf 2015;130:48–52.
  • [21] Guo Y, Wang L, Lv P, Zhang P. Transferrin-conjugated doxorubicin-loaded lipid-coated nanoparticles for the targeting and therapy of lung cancer. Oncol Lett 2015;9 (3):1065–72.
  • [22] Lu PJ, Huang SC, Chen YP, Chiueh LC, Shih DY. Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. J Food Drug Anal 2015;23(3):587–94.
  • [23] Smijs TG, Pavel S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl 2011;4:95–112.
  • [24] Aruoma OI, Cuppett SL. Antioxidant methodology: in vivo and in vitro concepts. New York: The American Oil Chemists Society; 1997.
  • [25] Mishra K, Ojha H, Chaudhury NK. Estimation of antiradical properties of antioxidants using DPPH*assay: a critical review and results. Food Chem 2012;130:1036–43.
  • [26] Salaam AD, Hwang P, Mclntosh R, Green HN, Jun WH, Dean D. Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer. Beilstein J Nanotechnol 2014;5:937–45.
  • [27] Das D, Nath BC, Phukon P, Yotikalita A, Dolui SK. Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids Surf B Biointerf 2013;111:556–60.
  • [28] Damrongsak P, Rammarat E, Locharoenrat K. Effects of gold nanoparticles on fluorescence polarization and emission spectra of rhodamine 6G solution. Key Eng Mater 2018;765:39–43.
  • [29] Locharoenrat K, Srivatcharakul S. Optical studies of zinc oxide nanoparticles and their biomedical application. Chinese J Phys 2015;53(4):080901.
  • [30] Silva MM, Santos MR, Caroco G, Rocha R, Justino G, Mira L. Structure-antioxidant activity relationships of flavonoids: a re-examination. Free Radic Res 2002;36(11):1219–27.
  • [31] Suja KP, Jayalekshmy A, Arumughan C. Free radical scavenging behavior of antioxidant compounds of sesame (Sesamum indicum L.) in DPPH* system. J Agric Food Chem 2004;52(4):912–5.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95c2b04f-425b-4924-a307-0d00f5b1b52f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.