PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Hydrogeochemical processes and evaluation of groundwater in Al-Salman area – Iraqi Southern Desert

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A field survey has been conducted for the study area using the Global Positioning System (GPS) and geological and geomorphological maps of the area. The study area is one of the important areas in Iraq characterized by scarce water resources. The purpose of the study is to determine the hydro-chemical processes and their relationship to groundwater quality carried out in the southwestern desert region of Iraq, where the region lacks extensive studies of water resources. Twenty-eight groundwater samples were collected from wells distributed between the eastern borders of Saudi Arabia and the West Bank of the Euphrates River. For the purpose of hydrogeochemical analyses, the Fetter method was used to collect and examine samples. A large part of the recharge area is located in Saudi Arabia, where the groundwater bearing aquifer represented by the Dammam formation extends to Iraq and Saudi Arabian International borders. The analysis determined the order of cations (Na+ > Ca2+ > Mg2+ > K+) and anions (Cl > SO42– > HCO3). High values of the variation coefficient (CV) correspond to the concentration of potassium, sodium and chloride ions (CV: 68.7, 64.7 and 64 respectively). To identify the hydrochemical water facies, the Piper diagram was used. It was found that 53% of the water samples belong to the Na-Cl type and 40% are of the Ca-Mg-Cl type, while the rest of the samples are the Ca-Cl type. To identify geochemical processes, it was found that ion exchange processes via chloroalkaline indices 1 and 2 are prevalent between Ca2+, Mg2+ in the groundwater and Na+, K+ in water bearing rocks. To learn more about the processes that led to the concentration of certain ions, such as sodium, it was found that they tend to be of silicate minerals related to surface runoff of water in recharge areas and carbonic rocks. It was also found that rock / soil-groundwater interaction and evaporation processes were the formal processes in the saturated zone and evaporation in the unsaturated zone are prevalent processes of groundwater ion concentration.
Wydawca
Rocznik
Tom
Strony
220--228
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • University of Al-Qadisiyah, College of Science, Iraq
  • Technical Institute of Shatra, Southern Technical University, Basra, Iraq
  • University of Al-Qadisiyah, College of Science, Iraq
  • Luleå University of Technology, Laboratorievägen 14, 971 87 Luleå, Sweden
  • Arab Regional Center for World Heritage, Manama, Bahrain
  • Ministry of Water Resources, General Commission of Groundwater, Baghdad, Iraq
Bibliografia
  • AL-SHAMMA’A A.M., AL-MUTAWKI K.G. 2014. Estimating of groundwater age and quality of Al-Shanafiya Area Southwest Iraq. Iraqi Journal of Science. Vol. 55. No. 3A p. 1061–1070.
  • BUDAY T. 1980. The regional geology of Iraq. Vol. 1. Stratigraphy and palaeogeography. Baghdad. State Organization for Minerals, Directorate General for Geological Survey and Mineral Investigations pp. 445.
  • CHEN J., HUANG Q., LIn Y., FANG Y., QIAN H., LIU R., MA H. 2019. Hydrogeochemical characteristics and quality assessment of groundwater in an irrigated region, Northwest China. Water. Vol. 11(1), 96. DOI 10.3390/w11010096.
  • CHEN J., QIAN H., GAO Y., LI X. 2017. Human health risk assessment of contaminants in drinking water based on triangular fuzzy numbers approach in Yinchuan City, Northwest China. Expo. Health. Vol. 10 p. 155–160.
  • CHRISTENSEN J.N., DAFFLON B., SHIEL A.E., TOKUNAGA T.K., WAN J., FAYBISHENKO B., DONG W., WILLIAMS K.H., HOBSON C., BROWN S.T. 2018. Using strontium isotopes to evaluate the spatial variation of groundwater recharge. Science of the Total Environment Vol. 637–638 p. 672–685. DOI 10.1016/j.scitotenv .2018.05.019.
  • DUROV S.A. 1948. Classification of natural waters and graphical representation of their composition. Reports of the Sciences Academy USSR. Vol. 59(1) p. 87–90.
  • FETTER C.W. 1980. Applied hydrogeology. Columbus, Ohio. Charles Merrill publ. Co., A. Bell and Howell Company. ISBN 0675081262 pp. 488.
  • GIBBS R.J. 1970. Mechanism controlling worlds water chemistry. Science. Vol. 170 p. 1088–1090. DOI 10.1126/science .170.3962.1088.
  • IMoEN 2014. The 5th National Report to the Convention on Biological Diversity in Iraq. March 2014. Baghdad. Iraqi Ministry of Environment pp. 174.
  • JANINE G., DAVID C., MARIE-JOSE D., FLORIAN M., MARY C., LOUIS D. 2009. Assessing and conserving groundwater biodiversity synthesis and perspectives. Freshwater Biology. Vol. 54 p. 930–941. DOI 10.1111/j.1365-2427.2009.02201.x.
  • JASSIM S.Z., GOFF J.C. (eds.) 2006. Geology of Iraq. Dolin. ISBN 8070282878 pp. 341.
  • JKEMAN A., BARRETEAU O., HUNT R.J., RINAUDO J.D., ROSS A. 2016. Integrated groundwater management. Concepts, approaches and challenges. Berlin, Germany. Springer. ISBN 978-3-319-23576-9 pp. 762.
  • KARANTH K.R. 1987. Groundwater assessment development and management. New Delhi. Tata McGraw Hill. ISBN 0-07- 451712-0 pp. 720.
  • KUMAR S.P.J. 2013. Interpretation of groundwater chemistry using piper and Chadha´s diagram: A comparative study from Perambalur Taluk. Elixir Geoscience. Vol. 54 p. 12208–12211.
  • LI P., QIAN H., ZHOU W. 2017. Finding harmony between the environment and humanity: An introduction to the thematic issue of the Silk Road. Environmental Earth Sciences. Vol. 76, 105. DOI 10.1007/s12665-017-6428-9.
  • LLOYD J.A., HEATHCOTE J.A. 1985. Natural inorganic hydrochemistry in relation to groundwater. An introduction. Oxford University Press. ISBN 0198544227 pp. 296.
  • MORENO S.P., MUELLER M. 2015. Societal participatory processes in the revision of National Biodiversity Strategies and Action Plans (NBSAPs) January 2015. IUCN pp. 58.
  • PIPER A.M. 1944. A graphic procedure in the geochemical interpretation of water analysis. American Geophysical Union Transactions. Vol. 25 p. 914–928.
  • RICHARDS L.A. (ed.) 1954. Diagnosis and improvement of saline alkali soils: Agriculture. Vol. 160. Handbook. No. 60. Washington. US Department of Agriculture pp. 182.
  • SALIM M.A., PORTER R., SCHIERMACKER-HANSEN P., CHRISTENSEN S., Al-JBOUR S. 2006. Field guide to the birds of Iraq. Baghdad. Nature Iraq/BirdLife International. ISBN 0988651408 pp. 374. [In Arabic].
  • SARIN M.M., KRISHNASWAMY S., DILL, S.B.L.K., MOORE W.S. 1989. Major ion chemistry of the Ganga-Brahmaputra River system: Weathering process and fluxes to the Bay of Bengal. Geochimica and Cosmochimica Acta. Vol. 53. Iss. 5. DOI 10.1016/0016-7037(89) 90205-6.
  • Satellites Pro undated. Iraq map [online]. [Access 11.09.2020]. Available at: https://satellites.pro/Iraq_map
  • SISSAKIAN V.K., FOUAD S.F. 2012. Geological Map of Iraq scales 1: 1000 000. 4th ed. Baghdad, Iraq. Iraq Geological Survey (GEOSURV) publications.
  • SUBRAMANI T., ELANGO L., DAMODARASAMY S.R. 2009. Groundwater quality and its suitability for drinking and agricutular use in Chithar River Basin, Tamil Nadu, India. Environment Geology. Vol. 47 p. 1099–1110. DOI 10.1007/s00254-005-1243-0.
  • SWARMA LATHA P., NAGESWARA RAO K. 2011. An integrated approach to assess the quality of groundwater in a coastal aquifer of Andhra Pradesh, India. Environmental Earth Sciences. Vol. 66 p. 2143– 2169. DOI 10.1007/s12665-011-1438-5.
  • TODD D.K., MAYS L.W. 2005. Groundwater hydrology. 3rd Ed. Wiley and Sons Inc. New York, U. S. ISBN 978-0-471-05937-0 pp. 656.
  • UMAR A., UMAR R., AHMED M.S. 2001. Hydrogeological and hydro-chemical framework of regional aquifer system in Kali Ganga sub-basin India. Environmental Geology. Vol. 40(4–5) p. 602– 661. DOI 10.1007/s002540000215.
  • VADIATI M., ADAMOWSKI J., BEYNAGHI A. 2018. A brief overview of trends in groundwater research: Progress towards sustainability? Environment Management. Vol. 223 p. 849–851. DOI 10.1016/ j.jenvman.2018.06.086.
  • WHO 2011. Guide lines for drinking water quality. Geneva. World Health Organization. 4th. Ed. ISBN 978-92-4-154815-1 pp. 515.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95c152f7-ef6b-4f1e-b8cf-abc7efa77fcf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.