PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrated interpretation of seismic and magnetotelluric data on Shurab diapirs in Qom basin, Central Iran

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent decades, diapirs are frequently used for CO2 and natural gas storage due to their extremely impermeable and nonreactive characteristics. Among various approaches, we use an integrated interpretation approach to resolve the diapir no. 4 belonging to the Shurab diapirs (SD). The SD is a group of diapirs that have pierced to the surface of the Qom basin of Central Iran, which is a candidate for natural gas storages. The complex geology of the SD is the main cause that previous 2D seismic surveys across the diapir could not provide required information to propose any location for any exploration borehole. Consequentially, 28 magnetotelluric (MT) and 1 audio-magnetotelluric station were measured along a SW-NE profle. Dimensionality and strike analysis for all stations is done by the use of phase tensor analysis. We used the nonlinear conjugate gradient algorithm to invert the TE- and TM-modes data simultaneously in 2D. The resistivity model was compared with the interpreted results of the post-stack depth migration model using seismic attributes. In order to extract the determinative geological information from the low-quality seismic section, envelope, variance, sweetness and instantaneous frequencies attributes were used. The integrated interpretation of the seismic and MT data resolves a precise geometry of the salt body, location of the dense part of the diapir as well as the tectonics around the diapir. The integrated interpretation of seismic and MT data of diapir no. 4 resulted in an exploration drilling program.
Czasopismo
Rocznik
Strony
1071--1090
Opis fizyczny
Bibliogr. 63 poz.
Twórcy
autor
  • Institute of Geophysics, University of Tehran, Tehran, Iran
  • Division of Geosciences and Environmental Engineering of the Department of Civil, Environment and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
autor
  • Institute of Geophysics, University of Tehran, Tehran, Iran
autor
  • Division of Geosciences and Environmental Engineering of the Department of Civil, Environment and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
Bibliografia
  • 1. Abaie IL, Ansari HJ, Badakhshan A, Jafari A (1963) History and development of the Alborz and Serajh fields, Central Iran. In: Proceeding, 6th world petrol conference, Frankfurt, pp 1–111
  • 2. Agha Nabati A (2004) Iran’s geology. Geological Survey of Iran, Tehran
  • 3. Amini B, Emami MH (1996) Geological map of Aran. Scale 1:100,000 Geological Survey of Iran, Tehran
  • 4. Bahorich MS, Farmer SL (1995) 3-D seismic discontinuity for faults and stratigraphic features: the coherence cube. In: 65th annual international meeting, Society of Exploration Geophysicists, expanded abstracts, vol 95, pp 93–96
  • 5. Bahr K (1988) Interpretation of the magnetotelluric impedance tensor: regional induction and local telluric distortion. Geophysics 62(2):119–127
  • 6. Bahr K (1991) Geological noise in magnetotelluric data: a classification of distortion types. Phys Earth Planet Inter 66(1–2):24–38
  • 7. Baikpour S, Motiei H, Najafzadeh K (2016) Geological and geophysical study of salt diapirs for hazardous waste disposal. Int J Environ Sci Technol 13(8):1951–1972
  • 8. Bays CA (1963) Use of salt solution cavities for underground storage. In: Symposium on salt, Northern Ohio Geological Society, vol 564, p 5
  • 9. Berdichevsky MN, Dmitriev VI (2008) Models and methods of magnetotellurics. Springer, Berlin
  • 10. Berdichevsky MN, Dmitriev VI, Pozdnjakova EE (1998) On two-dimensional interpretation of magnetotelluric soundings. Geophys J Int 133(3):585–606
  • 11. Booker IR (2014) The magnetotelluric phase tensor: a critical review. Surv Geophys 35(1):7–40
  • 12. Boraiko AA (1985) Storing up trouble hazardous waste. Natl Geogr 167(3):319–351
  • 13. Bostick FX (1984) Electromagnetic array profiling survey method.US Patent 4.591.791
  • 14. Bruthans J, Kamas J, Filippi M, Zare M, Mayo AL (2017) Hydrogeology of salt karst under different cap soils and climates (Persian Gulf and Zagros Mts., Iran). Int J Speleol 46(2):303–320
  • 15. Cagniard L (1953) Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics 18(3):605–635
  • 16. Caldwell TG, Bibby HM, Brown C (2004) The magnetotelluric phase tensor. Geophys J Int 158(2):457–469
  • 17. Chave AD, Jones AG (2012) The magnetotelluric method, theory and practice. Cambridge University Press, Cambridge
  • 18. Chopra S, Marfurt KJ (2007) Seismic attributes for prospect identification and reservoir characterization. Society of Exploration Geophysicists. ISBN 1560801417
  • 19. Constable SC, Parker RL, Constable CG (1987) Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52(3):289–300. https://doi.org/10.1190/1.1442303
  • 20. DeGroot-Hedlin C, Constable CG (1990) Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 55(12):1613–1624. https://doi.org/10.1190/1.1442813
  • 21. Eggers DE (1982) An eigenstate formulation of the magnetotelluric impedance tensor. Geophysics 47(8):1204–1214. https://doi.org/10.1190/1.1441383
  • 22. Epishkin DV (2016) Improving magnetotelluric data processing method. Mosc Univ Geol Bull 71(5):347–354
  • 23. Folle S, Gast R (2014) Nasrabad e Kashan salt structure—geological evaluation (part 3) of seismic results. HMA report
  • 24. Furrer MA, Suder PA (1955) The Oligo-Miocene marine formation in the Qum region (Central Iran). In: 4th world petroleum congress, Rome, Sect. I/A/5. Paper 1, pp 267–277
  • 25. Gansser A (1960) Die geologische Erforschung der Qum Gegend, Iran. Bulletin der Vereinigung Schweitzerisches. Petroleum-Geologen und-Ingenieur 23(65):1–16
  • 26. García Juanatey MA, Hübert J, Juhlin C, Malehmir A, Tryggvason A (2011) MT and reflection seismics in northwestern Skellefte Ore District, Sweden. Geophysics 78(2):B65–B76. https://doi.org/10.1190/geo2012-0169.1
  • 27. Groom RW, Bailey RC (1989) Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion. J Geophys Res Solid Earth 94(B2):1913–1925
  • 28. Groom RW, Bailey RC (1991) Analytic investigations of the effects of near-surface three-dimensional galvanic scatterers on MT tensor decompositions. Geophysics 56(4):496–518
  • 29. Hart B (2008) Stratigraphically significant attributes. Lead Edge 27(3):320–324
  • 30. Hoversten GM, Morrison HF, Constable SC (1998) Marine magnetotellurics for petroleum exploration, Part II: numerical analysis of subsalt resolution. Geophysics 63(3):826–840. https://doi.org/10.1190/1.1444394
  • 31. Jackson MPA, Cornelius RR, Craig CH, Gansser A, Stöklin J, Talbot CJ (1990) Salt diapirs of the Great Kavir, Central Iran. Geol Soc Am 177:139. https://doi.org/10.1130/MEM177
  • 32. Jones A (1988) Static shift of MT data and its removal in a sedimentary basin environment. Geophysics 53(7):967–978
  • 33. Koson S, Chenari P, Choowong M (2014) Seismic attributes and their applications in seismic geomorphology. Bull Earth Sci Thail 6(1):1–9
  • 34. Le CVA, Harris BD, Pethick AM, Takam-Takougang EM, Howe B (2016) Semiautomatic and automatic cooperative inversion of seismic and magnetotelluric data. Surv Geophys 37:845–896. https://doi.org/10.1007/s10712-016-9377-z
  • 35. Leveille J, Jones I, Zhou Z, Wang B, Liu F (2011) Subsalt imaging for exploration, production, and development: a review. Geophysics 76(5):WB3–WB20. https://doi.org/10.1190/geo2011-0156.1
  • 36. Mansoori I, Oskooi B, Pedersen LB (2015) Magnetotelluric signature of anticlines in Iran’s Sehqanat oil field. Tectonophysics 654:101–112. https://doi.org/10.1016/j.tecto.2015.05.004
  • 37. Mostofi R, Gansser A (1957) The story behind the 5 Alborz. Oil Gas J 55:78–84
  • 38. Nekouei E, Zarei M (2017) Karst hydrogeology of Karmustadj salt diapir, southern Iran. Carbonates Evaporites 32(3):315–323
  • 39. Nekouei E, Zarei M, Raeisi E (2016) The influence of diapir brine on groundwater quality of surrounding aquifers, Larestan, Iran. Environ Earth Sci 75(7):571. https://doi.org/10.1007/s12665-015-5237-2
  • 40. Nord West Geophysical LTD (2007) MTS prof Inv MT data inversion program, user’s manual, revision 1.0. (in Russian)
  • 41. Oskooi B, Pedersen LB, Smirnov M, Arnasson K, Esteinsson H, Manzella A, the DGP working group (2005) The deep geothermal structure of the Mid-Atlantic ridge deduced from MT data in SW Iceland. Phys Earth Planet Inter 150(1–3):183–195. https://doi.org/10.1016/j.pepi.2004.08.027
  • 42. Oskooi B, Pedersen LB, Koyi HA (2014) Magnetotelluric signature for the Zagros collision. Geophys J Int 196(3):1299–1310. https://doi.org/10.1093/gji/ggt466
  • 43. Oskooi B, Mansoori I, Pedersen LB, Koyi HA (2015) A magnetotelluric survey of ophiolites in the Neyriz area of southwestern of Iran. Pure appl Geophys 172(2):491–502
  • 44. Oskooi B, Moradi M, Pushkarev P (2018) Tectonic and geology of diapir No. 4 in Qom basin, Central Iran. In: 24th EM induction workshop, Helsingør, Denmark
  • 45. Pigott JD, Kang MH, Han HC (2013) First order seismic attributes for clastic seismic facies interpretation: examples from the East China Sea. J Asian Earth Sci 66:34–54
  • 46. Radovich BJ, Oliveros RB (1998) 3D sequence interpretation of seismic instantaneous attributes from the Gorgon Field. Lead Edge 17(9):1286–1293
  • 47. Rodi WL, Mackie RL (2001) Nonlinear conjugate gradients algorithm for 2D magnetotelluric inversion. Geophysics 66(1):174–187. https://doi.org/10.1190/1.1444893
  • 48. Rosenberg R (1975) Qum-1956: a misadventure in Iranian Oil. Bus Hist Rev 49(1):81–104. https://doi.org/10.2307/3112963
  • 49. Rubinat M, Ledo J, Roca E, Rossel O, Queralt P (2010) Magnetotelluric characterization of a salt diapir: a case study on Bicorb-Quesa diapir (Prebetic Zone, SE Spain). J Geol Soc 167:145–153. https://doi.org/10.1144/0016-76492009-029
  • 50. Simpson F, Bahr K (2005) Practical magnetotellurics. Cambridge University Press, Cambridge
  • 51. Siripunvaraporn W (2012) Three-dimensional magnetotelluric inversion: an introductory guide for developers and users. Surv Geophys 33:5–27. https://doi.org/10.1007/s10712-011-9122-6
  • 52. Stöklin J, Setudehnia A (1977) Stratigraphic lexicon of Iran. Geological Survey of Iran, report 18, p 376
  • 53. Subrahmanyam D, Rao PH (2008) Seismic attributes—a review. In: 7th international conference and exposition on petroleum geophysics, Hyderabad, pp 398–404
  • 54. Swift CM (1967) A magnetotelluric investigation of an electrical conductivity anomaly in the southwestern United States. Ph.D. dissertation, MIT, Cambridge
  • 55. Takam-Takougang EM, Harris B, Kepic A, Le CVA (2015) Cooperative joint inversion of 3D seismic and magnetotelluric data: with application in a mineral province. Geophysics 80(4):R175–R187. https://doi.org/10.1190/geo2014-0252.1
  • 56. Talbot CJ, Aftabi P (2004) Geology and models of salt extrusion at Qum Kuh, Central Iran. J Geol Soc 161(2):321–334. https://doi.org/10.1144/0016-764903-102
  • 57. Taner MT (2001) Seismic attributes. CSEG Rec 26(7):49–56
  • 58. Tikhonov AN (1950) On determination of electric characteristic of deep layers of the earth’s crust. Dokl Acad Nauk SSSR 151:295–297
  • 59. Tikhonov AN, Goncharsky AV, Stepanov VV, Yagola AG (1983) Regularizing algorithms and a priori information. Nauka, Moscow (in Russian)
  • 60. Um ES, Commer M, Newman G (2014) A strategy for coupled 3D imaging of large-scale seismic and electromagnetic data sets: application to subsalt imaging. Geophysics 79(3):ID1–ID13. https://doi.org/10.1190/geo2013-0053.1
  • 61. Vozoff K (1991) The magnetotelluric method. In: Corbett JD (ed) Electromagnetic method in applied geophysics—applications part A and part B: society of exploration geophysicists, pp 641–711
  • 62. Xing L, Aarre V, Barnes A, Theoharis T, Salman N, Tjåland E (2017) Instantaneous frequency seismic attribute benchmarking. SEG Technical Program Expanded Abstracts, pp 2086–2090
  • 63. ZAPCE (2016) Geological evaluation and seismicity in the area of Nasrabad-e Kashan salt structure, volume 1: geological evaluation. Report No. 1
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95c05a1b-5c1a-416f-ad25-99a8115b6a67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.