PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The determination of virtual source position using convergent anti-trigonometric functions (arcCOS and arcSIN) method for scanning-passive scatter beam in carbon ion therapy

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: We developed a convergent trigonometric functions technique (arcCOS, arcSIN) capable of dealing with the virtual source position delivered by different carbon ion energies from the pattern of scanning-passive scatter beam in this study. Materials and Methods: A home-made large-format CMOS sensor and Gaf Chromic EBT3 films were used for the virtual source position measurement. The Gaf films were embedded in a self-designed rectangular plastic frame to tighten the films and set up on a treatment couch for irradiation in the air with the film perpendicular to the carbon ion beam at the nominal source-axis-distance (SAD) as well as upstream and downstream from the SAD. The horizontal carbon ion beam with 5 energies at a machine opening field size was carried out in this study. The virtual source position was determined with a convergent arcCOS and arcSIN methods and compared with the linear regression by back-projecting the FWHM to zero at a distance upstream from the various source-film-distance. Results: The film FWHM measurement error of 0.5 mm (the large-format CMOS detectors was in pixel, a pixel equals 0.5 mm) leads to 1×10-3% deviation of α(cACOS and cASIN) at every assumed virtual source position. The overall uncertainty for the reproducibility of the calculated virtual source position by the assumed t in the vertical and horizontal directions amounts to 0.1%. The errors of calculated virtual source position by assumed t with back projecting FWHM to zero methods were within 1.1 ± 0.001, p = 0.033. The distance of virtual source positions is decreased from SAD with high to low energy. Conclusion: We have developed a technique capable of dealing with the virtual source position with a convergent arcCOS and arcSIN methods to avoid any manual measurement mistakes in scanning-passive scatter carbon ion beam. The method for investigating the virtual source position in the carbon ion beam in this study can also be used for external electrons and the proton.
Rocznik
Strony
10--25
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Heavy Ion Center of Wuwei Cancer Hospital; Gansu Wuwei Academy of Medical Sciences, Hepatic Diseases Center; Gansu Wuwei Tumor Hospital, Wuwei city, Gansu province, China
  • Heavy Ion Center of Wuwei Cancer Hospital; Gansu Wuwei Academy of Medical Sciences, Hepatic Diseases Center; Gansu Wuwei Tumor Hospital, Wuwei city, Gansu province, China
autor
  • Heavy Ion Center of Wuwei Cancer Hospital; Gansu Wuwei Academy of Medical Sciences, Hepatic Diseases Center; Gansu Wuwei Tumor Hospital, Wuwei city, Gansu province, China
  • Heavy Ion Center of Wuwei Cancer Hospital; Gansu Wuwei Academy of Medical Sciences, Hepatic Diseases Center; Gansu Wuwei Tumor Hospital, Wuwei city, Gansu province, China
autor
  • Heavy Ion Center of Wuwei Cancer Hospital; Gansu Wuwei Academy of Medical Sciences, Hepatic Diseases Center; Gansu Wuwei Tumor Hospital, Wuwei city, Gansu province, China
  • Department of Medical Physics, Chengde Medical University, Chengde City, Hebei Province, China
  • Department of Radiation Oncology, Yee Zen General Hospital, Tao Yuan City, Taiwan
Bibliografia
  • 1. Sawkey DL, Faddegon BA. Determination of electron energy, spectral width, and beam divergence at the exit window for clinical megavoltage x-ray beams. Med Phys. 2009;36:698-707. https://doi.org/10.1118/1.3070547
  • 2. Sham E, Seuntjens J, Devic S, Podgorsak EB. Influence of focal spot on characteristics of very small diameter radiosurgical beams. Med Phys. 2008;35(7):3317-3330. https://doi.org/10.1118/1.2936335
  • 3. Knöös T, Wieslander E, Cozzi L, et al. Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situation. Phys Med Biol. 2006;51(22):5785-5807. https://doi.org/10.1088/0031-9155/51/22/005
  • 4. Sterpin E, Tomsej M, De Smedt B, et al. Monte Carlo evaluation of the AAA treatment planning algorithm in a heterogeneous multilayer phantom and IMRT clinical treatments for an Elekta SL25 linear accelerator. Med Phys. 2007;34(5):1665-1677. https://doi.org/10.1118/1.2727314
  • 5. Bortfeld T, Schlegel W. An analytical approximation of depth–dose distributions for theraputic proton beams. Phys Med Biol. 2007;41(8):1331-1339. https://doi.org/10.1088/0031-9155/41/8/006
  • 6. Chetty IJ, Curran B, Cygler JE, et al. Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys. 2007;34(12):4818-4853. https://doi.org/10.1118/1.2795842
  • 7. Kooy H, Rosenthal S, Engelsman M, et al. The prediction of output factors for spread-out proton Bragg peak fields in clinical practice Phys Med Biol. 2005;50(24):5847-5856. https://doi.org/10.1088/0031-9155/50/24/006
  • 8. Kooy H, Schaefer M, Rosenthal S, Bortfeld T. Monitor unit calculations for range-modulated spread-out Bragg peak fields. Phys Med. Biol. 2003;48(17):2797-2808. https://doi.org/10.1088/0031-9155/48/17/305
  • 9. Petti PL. Differential-pencil-beam dose calculation for charged particles. Med Phys. 1992;19:137-149. https://doi.org/10.1118/1.596887
  • 10. Verhaegen F, Seuntjens J. Monte Carlo modeling of external radiotherapy photon beams. Phys Med Biol. 2003;48(21):R107-R164. https://doi.org/10.1088/0031-9155/48/21/r01
  • 11. Russell KR, Isacsson U, Saxner M, et al. Implementation of pencil kernel and depth penetration algorithms for treatment planning of proton beams. Phys Med Biol. 2000;45(1):9-27. https://doi.org/10.1088/0031-9155/45/1/302
  • 12. Reynaert N, van der Marck SC, Schaart DR, et al. Monte Carlo treatment planning for photon and electron beams. Radiat Phys Chem. 2007;76(4):643-686. https://doi.org/10.1016/j.radphyschem.2006.05.015
  • 13. Lei KM, Mak PI, Law MK, Martins RP. CMOS biosensors for in vitro diagnosis - transducing mechanisms and applications. Lab Chip. 2016;16(19):3664-3681. https://doi.org/10.1039/c6lc01002d
  • 14. Kang HG, Song JJ, Lee K et al. An investigation of medical radiation detection using CMOS image sensors in smartphones. Nuclear Inst and Methods in Physics Research, A. 2016;823:126-134. https://doi.org/10.1016/j.nima.2016.04.007
  • 15. Dreindl R, Georg D, Stock M. Radiochromic film dosimetry: considerations on precision and accuracy for EBT2 and EBT3 type films. Zeitschrift für Medizinische Physik. 2014;24(2):153-163. https://doi.org/10.1016/j.zemedi.2013.08.002
  • 16. Kamomae T, Miyabe Y, Sawada A, et al. Simulation for improvement of system sensitivity of radiochromic film dosimetry with different band-pass filters and scanner light intensities. Radiol Phys Technol. 2011;4(2):140-147. https://doi.org/10.1007/s12194-011-0113-6
  • 17. García-Garduño OA, Lárraga-Gutiérrez JM, Rodríguez-Villafuerte M, et al. Effect of correction methods of radiochromic EBT2 films on the accuracy of IMRT QA. App Radi Isot. 2016;107:121-126. https://doi.org/10.1016/j.apradiso.2015.09.016
  • 18. Schaffner B. Proton dose calculation based on in-air fluence measurements. Phys Med Biol. 2008;53(6):1545-1562. https://doi.org/10.1088/0031-9155/53/6/003
  • 19. Wu JM, Lee TF, Kuo CM A light field-based method to adjust rounded leaf end MLC position for split shape dose calculation correction in a radiation therapy treatment planning system. J Appl Clin Med Phys. 2012;13(6):3937. https://doi.org/10.1120/jacmp.v13i6.3937
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95be1c1f-ebeb-44e8-8dc5-472d3a7a60da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.