PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Influence of cryogenic-vibration compound field on the residual stress and forming accuracy during aluminum alloy forming

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aluminum alloy parts are widely used in aerospace and other fields due to their light weight and good corrosion resistance. However, during the forming process, uneven deformation can lead to high residual stresses and low forming accuracy in the parts, ultimately seriously affecting the subsequent service performance. In this study, the influence of the cryogenic-vibration compound field on the residual stresses, microstructural evolution, and forming accuracy were investigated based on the deep drawing experiment of aluminum alloy cylindrical parts. The results indicate that when compared to the absence of cryogenic and vibration, the compound field can reduce residual stresses in the parts by 22%, which is attributed to lower dislocation density and more uniform distribution of low-angle grain boundaries. The cryogenic environment can weaken the degree of dislocation entanglement in low-angle grain boundaries, meanwhile, the dislocations are easily dissociated and released under the vibration. The maximum sidewall thickness difference, the sidewall height difference, and the surface roughness decrease by 68, 69, and 52%, respectively, which is due to the uniform distribution of microstructure and the reduction of frictional resistance caused by the boiling liquid nitrogen. This study provides a new method for the forming of high-quality aluminum alloy parts.
Rocznik
Strony
art. no. e136, 2024
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
autor
  • State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
autor
  • State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
autor
  • Shanxi New Materials Co., Ltd., Aluminum Corporation of China, Hejin 043300, China
autor
  • Asia-Pacific Light Alloy (Nantong) Technology Co., Ltd., Haian 226600, China
autor
  • Shanxi New Materials Co., Ltd., Aluminum Corporation of China, Hejin 043300, China
autor
  • State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
autor
  • State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Bibliografia
  • 1. Miller WS, Zhuang L, Bottema J, Wittebrood AJ, De Smet P, Haszler A, Vieregge A. Recent development in aluminium alloys for the automotive industry. Mater Sci Eng A. 2000;280(1):37-49.
  • 2. Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Des (1980-2015). 2014;56:862-71.
  • 3. Cao MY, Hu H, Jia XD, Tian SJ, Zhao CC, Han XB. Mechanism of ultrasonic vibration assisted upsetting of 6061 aluminum alloy. J Manuf Process. 2020;59:690-7.
  • 4. Feng X, Lu X, Zuo Y, Zhuang N, Chen D. The effect of deformation on metastable pitting of 304 stainless steel in chloride contaminated concrete pore solution. Corros Sci. 2016;103:223-9.
  • 5. Li C, Long J, Du F, Wang X, Deng L, Gong P, Zhou P. Enhanced forming accuracy and mechanical property of CoCrFeMnNi high entropy alloy by ultrasonic and cryogenic fields-assisted deformation. Mater Lett. 2023;347: 134587.
  • 6. Ko D, Ko D, Lim H, Lee J, Kim B. Prediction and measurement of relieved residual stress by the cryogenic heat treatment for Al6061 alloy: mechanical properties and microstructure. J Mech Sci Technol. 2013;27:1949-55.
  • 7. Yan J, Kong G, Zhang L. Low-temperature tensile behaviours of 6061-T6 aluminium alloy: tests, analysis, and numerical simulation. Structures. 2023;56:105054.
  • 8. Shi J, Hou L, Zuo J, Zhuang L, Zhang J. Cryogenic rolling-enhanced mechanical properties and microstructural evolution of 5052 Al-Mg alloy. Mater Sci Eng A. 2017;701:274-84.
  • 9. Wang C, Yi Y, Wang H, Dang J, An Q, Dong F, Huang S, He H, Chen M. Investigation on the formability and deformation mechanism of aluminum alloy thin-walled parts at cryogenic temperature. J Mater Process Technol. 2023;319:118041.
  • 10. Araghchi M, Mansouri H, Vafaei R, Guo Y. A novel cryogenic treatment for reduction of residual stresses in 2024 aluminum alloy. Mater Sci Eng A. 2017;689:48-52.
  • 11. Bai Y, Yang M. Deformation analysis of brass in micro compression test with presence of ultrasonic vibration. Int J Precis Eng Manuf. 2015;16:685-91.
  • 12. Yao Z, Kim G, Faidley L, Zou Q, Mei D, Chen Z. Effects of superimposed high-frequency vibration on deformation of aluminum in micro/meso-scale upsetting. J Mater Process Technol. 2012;212(3):640-6.
  • 13. Lou Y, He JS, Chen H, Long M. Effects of vibration amplitude and relative grain size on the rheological behavior of copper during ultrasonic-assisted microextrusion. Int J Adv Manuf Technol. 2017;89:2421-33.
  • 14. Zhang Q, Yu L, Shang X, Zhao S. Residual stress relief of welded aluminum alloy plate using ultrasonic vibration. Ultrasonics. 2020;107:106164.
  • 15. Xia S, Zhang Y. Deformation mechanisms of Al 0.1 CoCrFeNi high entropy alloy at ambient and cryogenic temperatures. Mater Sci Eng A. 2018;733:408-13.
  • 16. Hu J, Shimizu T, Yoshino T, Shiratori T, Yang M. Ultrasonic dynamic impact effect on deformation of aluminum during micro-compression tests. J Mater Process Technol. 2018;258:144-54.
  • 17. Roy AK, Bandyopadhyay S, Suresh SB, Maitra D, Kumar P, Wells D, Ma L. Relationship of residual stress to dislocation density in cold-worked martensitic alloy. Mater Sci Eng A. 2006;416(1-2):134-8.
  • 18. Tekumalla S, Matteo S, Stefan Z. Delineating dislocation structures and residual stresses in additively manufactured alloys. Acta Mater. 2024;262: 119413.
  • 19. Meng B, Cao BN, Wan M, Xu J, Shan DB. Ultrasonic-assisted microforming of superalloy capillary: modeling and experimental investigation. J Manuf Process. 2020;57:589-99.
  • 20. Yao Z, Kim G, Wang Z, Faidley L, Zou Q, Mei D, Chen Z. Acoustic softening and residual hardening in aluminum: modeling and experiments. Int J Plast. 2012;39:75-87.
  • 21. Li C, Tang X, Zhang H, Wang X, Deng L, Zhang M, Gong P, Jin J. Ultrasonic and size effects on the rheological behavior of CoCr-FeMnNi high-entropy alloy. J Alloy Compd. 2022;913: 165238.
  • 22. Gutowski P, Leus M. The effect of longitudinal tangential vibrations on friction and driving forces in sliding motion. Tribol Int. 2012;55:108-18.
  • 23. Le HR, Sutcliffe MPF, Wang P, Burstein GT. Surface generation and boundary lubrication in bulk forming of aluminium alloy. Wear. 2005;258(10):1567-76.
  • 24. Wen S, Huang P. Principles of tribology. Singapore: Wiley; 2012.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95bdf1e2-6309-4820-8470-eacf939a972b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.