PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Third order singularly perturbed delay differential equation of reaction diffusion type with integral boundary condition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A class of third order singularly perturbed delay differential equations of reaction diffusion type with an integral boundary condition is considered. A numerical method based on a finite difference scheme on a Shishkin mesh is presented. The method suggested is of almost first order convergent. An error estimate is derived in the discrete norm. Numerical examples are presented, which validate the theoretical estimates.
Rocznik
Strony
99--110
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
  • Bharathidasan University Tiruchirappalli, India
  • Bharathidasan University Tiruchirappalli, India
Bibliografia
  • [1] Amiraliyev, G.M., & Cimen, E. (2010). Numerical method for a singularly perturbed convectiondiffusion problem with delay. Applied Mathematics and Computation, 216, 2351-2359.
  • [2] Cimen, E. (2018). Numerical solution of a boundary value problem including both delay and boundary layer. Mathematical Modeling and Analysis, 23(4), 568-581.
  • [3] Cimen, E., & Cakir, M. (2018). Convergence analysis of finite difference method for singularly perturbed nonlocal differential-difference problem. Miskolc Mathematical Notes, 19(2), 795-812.
  • [4] Mahendran, R., & Subburayan, V. (2018). Fitted finite difference method for third order singularly perturbed delay differential equations of convection diffusion type. International Journal of Computational Methods, 15(1).
  • [5] Subburayan, V., & Ramanujam, N. (2014). An initial value method for singularly perturbed third order delay differential equations. Proc. Int. Conf. Mathematical Sciences, Sathyabhama University, Chennai, India, 221-229.
  • [6] Sekar, E., & Tamilselvan, A. (2018). Singularly perturbed delay differential equations of convection diffusion type with integral boundary condition. Journal of Applied Mathematics and Computing, 1-22.
  • [7] Choi, Y.S., &Chan, K.Y. (1992). A Parabolic equation with nonlocal boundary conditions arising from electrochemistry, Nonlinear Analysis, 18, 317-331.
  • [8] Day,W.A. (1992). Parabolic equations and thermodynamics. Quarterly of Applied Mathematics, 50, 523-533.
  • [9] Cannon, J. (1963). The solution of the heat equation subject to the specification of energy. Quarterly of Applied Mathematics, 21, 155-160.
  • [10] Bahuguna, D., Abbas, S., & Dabas, J. (2008). Partial functional differential equation with an integral condition and applications to population dynamics. Nonlinear Analysis, 69, 2623-2635.
  • [11] Bahuguna, D., & Dabas, J. (2008). Existence and uniqueness of a solution to a semilinear partial delay differential equation with an integral condition. Nonlinear Dynamics and Systems Theory, 8(1), 7-19.
  • [12] Sekar, E., & Tamilselvan, A. (2019). Finite difference scheme for third order singularly perturbed delay differential equation of convection diffusion type with integral boundary condition. Journal Applied Mathematics and Computing, 1-14.
  • [13] Miller, J.J.H., O’Riordan, E., & Shishkin, G.I. (1996). Fitted Numerical Methods for Singular Perturbation Problems. Singapore, New Jersey, London, Hong Kong: World Scientific Publishing Co.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95b8c2cf-d49c-444a-b784-c5286f7d8870
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.