PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review: Radiation Heat Transfer through Fire Fighter Protective Clothing

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Praca przeglądowa: wymiana ciepła przez promieniowanie w odzieży strażackiej
Języki publikacji
EN
Abstrakty
EN
A fire fighter garment is multilayer protective clothing with an outer shell, moisture barrier and thermal barrier, respectively. Fire fighters encounter different levels of radiant heat flux while performing their duties. This review study acknowledges the importance and performance of fire fighter protective clothing when subjected to a low level of radiation heat flux as well as the influence of air gaps and their respective position on the thermal insulation behaviour of multilayer protective clothing. Thermal insulation plays a vital role in the thermal comfort and protective performance of fire fighter protective clothing (FFPC). The main emphasis of this study was to analyse the performance of FFPC under different levels of radiant heat flux and how the exposure time of fire fighters can be enhanced before acquiring burn injuries. The preliminary portion of this study deals with the modes of heat transportation within textile fabrics, the mechanism of thermal equilibrium of the human body and the thermal protective performance of firefighter protective clothing. The middle portion is concerned with thermal insulation and prediction of the physiological load of FFPC. The last section deals with numerical models of heat transmission through firefighter protective clothing assemblies and possible utility of aerogels and phase change materials (PCMs) for enhancing the thermal protective performance of FFPC.
PL
Odzież strażacka jest wielowarstwową odzieżą ochronną składającą się z warstw barierowych dla wilgoci i wysokich temperatur oraz z powłoki zewnętrznej. Podczas wykonywania swoich obowiązków strażacy napotykają na różne poziomy promieniowania cieplnego. W pracy omówiono znaczenie i skuteczność strażackiej odzieży ochronnej podczas oddziaływania promieniowania cieplnego, a także wpływ luk powietrznych i ich położenia na zachowanie termiczne wielowarstwowej strażackiej odzieży ochronnej. Izolacja termiczna odgrywa zasadniczą rolę w komforcie cieplnym strażackiej odzieży ochronnej (FFPC). Głównym celem badania było zbadanie skuteczności ochronnej FFPC na różnych poziomach promieniowania cieplnego i określenie ewentualnych możliwości wydłużenia czasu narażenia strażaków na promieniowanie termiczne. W pracy omówiono sposoby transportu ciepła w tkaninach tekstylnych, mechanizm równowagi termicznej ciała ludzkiego oraz działania ochronnego odzieży strażackiej. Przedstawiono także numeryczne modele przenikania ciepła przez strażacką odzież ochronną i możliwość zastosowania aerożeli i materiałów ulegających przemianie fazowej (PCM) w celu zwiększenia ochrony termicznej strażackiej odzieży ochronnej.
Rocznik
Strony
65--74
Opis fizyczny
Bibliogr. 68 poz., rys., tab.
Twórcy
autor
  • Department of Clothing Technology, Faculty of Textile Engineering, Technical University of Liberec, Liberec, Czech Republic
autor
  • Department of Clothing Technology, Faculty of Textile Engineering, Technical University of Liberec, Liberec, Czech Republic
autor
  • Department of Clothing Technology, Faculty of Textile Engineering, Technical University of Liberec, Liberec, Czech Republic
Bibliografia
  • 1. Holmer I. How is performance in the heat affected by clothing? Textile Bioengineering and Informatics Symposium Proceedings 2008; 1: 700-705.
  • 2. Havenith G, Holmer I and Parsons K. Personal factors in thermal comfort assessment: clothing properties and metabolic heat production. Energy and Buildings 2002; 34: 581-591.
  • 3. Haghi A K. Heat and mass transfer in textiles, WSEAS press, 2011.
  • 4. Williams JT. Textiles for cold weather apparel, wood head publishing limited, 2009.
  • 5. Ogulata R T. The Effect of Thermal Insulation of Clothing on Human Thermal Comfort. Fibres and Textiles in Eastern Europe 2007; 15, 2 (61): 67-72.
  • 6. Holmer I. Protective clothing in hot environments. Industrial Health 2006; 44: 404-413.
  • 7. Song G, Paskaluk S, Sati R, Crown E, Dale J, Ackerman M. Thermal protective performance of protective clothing used for low radiant heat protection. Textile Research Journal 2011; 81(3):311–323.
  • 8. Ma¨ kinen H. Firefighter’s protective clothing. In: Textiles for Protection. Scott RA (ed.). Cambridge UK: Woodhead, 2005, p.622–647.
  • 9. Onofrei E, Petrusic S. Bedek G, Dupont D, Soulat D and Codau Teodor-Cezar. Study of heat transfer through multilayer protective clothing at low-level thermal radiation. Journal of industrial textile 2014:1-17.
  • 10. Huang J H. Thermal parameters for assessing thermal properties of clothing. Journal of Thermal Biology 2006; 31: 61-466.
  • 11. Roguski J, Stegienko K, Kubis D and Blogowski M. Comparison of the requirements and directions of development of methods for testing protective clothing for firefighting, Fibers and Textiles in Eastern Europe 2016; 24, 5(119): 132-136.
  • 12. Cui Z, Ma C and Lv N. Effects of heat treatment on the mechanical and thermal performance of fabric used in firefighting protective clothing, Fibers and Textiles in Eastern Europe 2015; 23, 2(110): 74-78.
  • 13. Kutlu BA, Cireli. Thermal Analysis and Performance Properties of Thermal Protective Clothing. Fibers and Textiles in Eastern Europe 2005; 13, 3(51): 58-62.
  • 14. Celcar D, Meinander H and Jelka G. Heat and moisture transmission properties of clothing systems evaluated by using a sweating thermal manikin under different environmental conditions. International Journal of Clothing Science and Technology 2008; 20: 240-252.
  • 15. Konarska M, Soltynski K, Sudol-Szopinska I, Młoźniak D, Chojnacka A. Aspects of standardization in measuring clothing thermal insulation on thermal manikin. Fibres and Textiles in Eastern Europ e2006; 14, 4(58): 58 – 63.
  • 16. Konarska M, Soltynski K, Sudol-Szopinska I, Chojnacka A. Comparative evaluation of clothing thermal insulation measured on a thermal manikin and on volunteers. Fibres and Textiles in Eastern Europe 2007; 15, 2(61):79 – 85.
  • 17. Matusiak M. Thermal Comfort Index as a Method of Assessing the Thermal Comfort of Textile Materials, Fibres and Textiles in Eastern Europe 2010; 18, 2(79): 45-50
  • 18. Bogdan A, Zwolinska M. Future trends in development of thermal manikins applied for the design of clothing thermal insulation, Fibres and Textiles in Eastern Europe 2012; 20, 4(93): 89-95.
  • 19. ISO 11092: 1993. Textiles – Physiological Effects – Measurement of Thermal and Water Vapour Resistance Under Steady-State Conditions (Sweating Guarded Hotplate Test). International Organization for Standardization, Geneva.
  • 20. ASTM 1868:2005. Standard Test Method for Thermal and Evaporative Resistance of Clothing Materials Using a Sweating Hot Plate. American Society for Testing and Materials, West Conshohocken, PA.
  • 21. Rossi R. Firefighting and its influence on the body. Ergonomics 2003; 46:1017-1033.
  • 22. Kutlu B and Cireli A. Thermal analysis and performance properties of thermal protective clothing, Fibers and Textiles in Eastern Europe 2005; 13, 3(51): 58-62.
  • 23. Li J, Li X H, Lu Y H and Wang Y Y. A new approach to characterize the effect of fabric deformation on thermal protective performance. Measurement Science and Technology 2012; 23: 5601-5606.
  • 24. Wang F, Kuklane K, Gao C and Holmer I. Can the PHS model (ISO7933) predict reasonable thermophysiological responses while wearing protective clothing in hot environments? Physiological Measurement 2011; 32: 239-249.
  • 25. Ming Fu, Wenguo Weng and Hongyong Yuan. Thermal insulations of multilayer clothing systems measured by a bench scale test in low level heat exposures. International Journal of Clothing Science and Technology 2013; 26:412-423.
  • 26. ISO 5660-1: 2002Reaction-to-Fire Tests – Heat Release, Smoke Production and Mass Loss Rate -Part 1: Heat Release Rate (Cone Calorimeter Method). International Organization for Standardization, Geneva.
  • 27. Wichman I S. Material flammability, combustion, toxicity and fire hazard in transportation. Progress in Energy and Combustion Science 2003; 29: 247-299.
  • 28. Incropera F P, DeWitt D P, Bergman T L and Lavine A S. Fundamentals of Heat and Mass Transfer. 6th ed. New York: John Wiley & Sons Inc, 2002: 420-621.
  • 29. Lee Y M and Barker R L. Thermal protective performance of heat-resistance fabrics in various high intensity heat exposures. Textile Res J 1987; 57: 123.
  • 30. Sun G, Yoo H S, Zhang X S and Pan N. Radiant protective and transport properties of fabrics used by wild land firefighters. Textile Res J 2000; 70: 567–573.
  • 31. Song G, Barker R L, Hamouda H, Kuznetsov A V, Chitrphiromsri P and Grimes R V. Modeling the thermal protective performance of heat resistant garment in flash fire exposures. Textile Res J 2004; 74(12): 1033.
  • 32. Song G and Barker RL. Analyzing thermal stored energy and clothing thermal protective performance. In: Proceedings of 4th International Conference on Safety & Protective Fabrics, Pittsburgh 2004, PA, Sept. 26–27, 2004
  • 33. Mandal S and Song G. Characterization of protective textile fabrics for various thermal exposures. Text Res J 2012; first published November.
  • 34. Song G W. Modeling thermal protection outfits for fire exposure. North Carolina, USA: North Carolina State University, 2002, 1–224.
  • 35. NFPA 1971:2000. Protective ensemble for structural firefighting. Quincy, MA: National Fire Protection Association.
  • 36. Torvi D A, Dale J D and Faulkner B. Influence of air gaps on bench-top test results of flame resistant fabrics. J Fire Prot Eng 1999; 10: 1–12.
  • 37. Ghazy A and Bergstrom D J. Numerical simulation of transient heat transfer in a protective clothing system during a flash fire exposure. Numer Heat Tr A–Appl 2010; 58(9): 702–724.
  • 38. Song G. Clothing air gap layers and thermal protective performance in single layer garment. J Ind Text 2007; 36: 193–205.
  • 39. Ming Fu, Wenguo weng and Hongyong. Effects of multiple air gaps on thermal performance of fire fighter protective clothing under low level heat exposure. Textile Research Journal 2013; 1-11.
  • 40. Camenzind M A, Dale D J, Rossi R M. Manikin test for flame engulfment evaluation of protective clothing: Historical review and development of a new ISO standard. Fire and Materials 2007; 31(5):285–295.
  • 41. International Standard Organization. ISO 5660–1:2002 Reaction-to-fire tests – Heat release, smoke production and mass loss rate. Part 1: Heat release rate (cone calorimeter method). Geneva, Switzerland.
  • 42. Torvi D A. Heat transfer in thin fibrous materials under high heat flux conditions. PhD Dissertation, University of Alberta, Edmonton, Canada, 1997.
  • 43. Stroup D W, McLane R A and Twilley W H. Full ensemble and bench scale testing of fire fighter protective clothing. NISTIR 7467 2007; 1–75.
  • 44. Keiser C and Rossi R M. Temperature analysis for the prediction of steam formation and transfer in multilayer thermal protective clothing at low level thermal radiation. Text Res J 2008; 78(11): 1025–1035.
  • 45. Song G, Gholamreza F, Cao W. Analyzing thermal stored energy and effect on protective performance. Textile Research Journal 2011; 81(11):1124–1138.
  • 46. Lu Y H, Li J, Li X H, Song G W. The effect of air gaps in moist protective clothing on protection from heat and flame. Journal of Fire Science 2013; 31(2):99–111.
  • 47. Hes L and Araujo M. Simulation of the effect of air gaps between the skin and a wet fabric on resulting cooling flow. Textile Research Journal 2010; 80:1488–1497.
  • 48. Ming Fu, Wenguo Weng and Hongyong Yuan. Quantitative investigation of air gaps entrapped in multilayer thermal protective clothing in low-level radiation at the moisture condition. Fire Mater. 2016; 40:179–189
  • 49. Tata J, Alongi J, Frache A. Optimization of the procedure to burn textile fabrics by cone calorimeter: part II. Results on nanoparticle-finished polyester Fire and Materials 2012; 36(7):527–536.
  • 50. White R H, Nam S, Parikh D V. Cone calorimeter evaluation of two flame retardant cotton fabrics. Fire and Materials 2013; 37(1):46–57.
  • 51. Fu M, Weng W G, Yuan H Y. Quantitative assessment of the relationship between radiant heat exposure and the protective performance of multilayer thermal protective clothing during dry and wet conditions. Journal Hazard and Materials 2014; 276: 383–392.
  • 52. Korycki R. Method of thickness optimization of textile structures during coupled heat and mass transport. Fibres and Textiles in Eastern Europe 2009; 17, 1(72): 33–38.
  • 53. Loghin C. Imbracaminte functionala—modelarea si simularea functiilor de protective. Iasi: PIM, 2008.
  • 54. Sybilska W, Korycki R. Analysis of coupled heat and water vapour transfer in textile laminates with a membrane. Fibres and Textiles in Eastern Europe 2010; 18, 3(80) 65–69.
  • 55. Li Y and Zhu Q. Simultaneous heat and moisture transfer with moisture sorption, condensation, and capillary liquid diffusion in porous textiles. Tex Res J 2003; 73: 515–524.
  • 56. Song G, Chitrphiromsri P and Ding D. Numerical simulations of heat and moisture transport in thermal protective clothing under flash fire conditions. Int J Occup Saf Ergo 2008; 14: 89–106.
  • 57. Chitrphiromsri P and Kuznetsov AV. Modeling heat and moisture transport in firefighter protective clothing during flash fire exposure. Heat Mass Transfer 2004; 41: 206–215.
  • 58. ISO 22007-2:2008. Plastics—determination of thermal conductivity and thermal diffusivity, part 2: transient plane heat source (hot disc) method.
  • 59. Mercer G N and Sidhu S H. Mathematical modeling of the effect of fire exposure on a new type of protective clothing. ANZIAM 2008; 49: C289–C305.
  • 60. Lee Y M and Barker R L. Effect of moisture on the thermal protective performance of heat-resistant fabrics. Journal of fire Science 1986; 4 (5): 315-331.
  • 61. Barker R L, Guerth S C, Grimes R V and Hamouda H. Effects of moisture on the thermal protective performance of firefighter protective clothing in low level radiant heat exposures. Textile Research Journal 2006; 76 (1): 27-31.
  • 62. Keiser C and Rossi R M. Temperature analysis for the prediction of steam formation and transfer in multilayer thermal protective clothing at low level thermal radiation. Textile Research Journal 2008; 78(11):1025-1035.
  • 63. Zhu F L and Li K J. Numerical modeling of heat and moisture through wet cotton fabric using the method of chemical thermodynamic law under simulated fire. Fire Technology 2011; 47(3): 801-819.
  • 64. Ming Fu, Wenguo Weng and Hongyong Yuan. Combined effects of moisture and radiation on thermal performance of protective clothing. International Journal of Clothing Science and Technology 2014; 27(6): 918-834.
  • 65. ASTM F 1291: 2010. Standard Test Method for Measuring the Thermal Insulation of Clothing Using a Heated Manikin, American Society for Testing and Materials, West Conshohocken, PA.
  • 66. Zhu F, Feng Q, Liu R, Yu B and Zhou Y. Enhancing thermal protective performance of firfighter protective fabrics by incorporating Phase change materials, Fibers and Textiles in Eastern Europe 2015; 23, 2(110) :68-73.
  • 67. Shaid A, Furgusson M and Wang L. Thermophysiological comfort analysis of aerogel nanoparticle incorporated fabric for fire fighter’s protective clothing, Chem Mater Eng 2014; 2: 37–43.
  • 68. Jin L, Hong K and Yoon K. Effect of aerogel on thermal protective performance of firefighter clothing. J Fiber Bioeng Inform 2013; 6: 315–324.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95b70040-1272-470d-9d99-d8285672b342
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.