Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The application of hexanitrohexaazaisowurtzitane (CL-20) in energetic materials will be expanded by its use as superfine particles. A method of fabricating nano- and micron-sized spheres of CL-20 by using electrospray is discussed. The effects of the precursor solution and the experimental conditions on the morphology and the crystal phase of the CL-20 particles are introduced. A variety of solvents was used to dissolve raw CL-20 for the preparation of the precursor solution with different CL-20 contents. The conductivity and viscosity of the precursor solutions were tested before the electrospray process. The electrostatic parameters were adjusted by changing the voltage and the distance between the nozzle and the plate. The morphology, crystal phase, mechanical sensitivity, density, and thermal stability of the raw CL-20 and the as-sprayed CL-20 samples were determined using scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry (DSC). Furthermore, the density and the mechanical sensitivity were tested for the raw and the as-sprayed CL-20. DSC tests were conducted to compare the thermal stability and reactivity of the samples.
Słowa kluczowe
Rocznik
Tom
Strony
572--589
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Beijing Institute of Technology, 5 South Zhong Guan Cun Street, Haidian Beijing 100081, P. R. China
autor
- Beijing Institute of Technology, 5 South Zhong Guan Cun Street, Haidian Beijing 100081, P. R. China
autor
- Beijing Institute of Technology, 5 South Zhong Guan Cun Street, Haidian Beijing 100081, P. R. China
autor
- Beijing Institute of Technology, 5 South Zhong Guan Cun Street, Haidian Beijing 100081, P. R. China
autor
- Beijing Institute of Technology, 5 South Zhong Guan Cun Street, Haidian Beijing 100081, P. R. China
Bibliografia
- [1] Samudre, S. S.; Nair, U. R.; Gore, G. M. Studies on an Improved Plastic Bonded Explosive (PBX) for Shaped Charges. Propellants Explos. Pyrotech. 2009, 34 (2): 145-150.
- [2] Guo, X.; Ouyang, G.; Liu, J. Massive Preparation of Reduced-sensitivity Nano-CL-20 and its Characterization. J. Energ. Mater. 2015, 33 (1): 24-33.
- [3] Wang, J. Y.; Hao, H.; Wen, Z. X. Prefilming Twin-fluid Nozzle Assisted Precipitation Method for Preparing Nanocrystalline HNS and its Characterization. J. Hazard. Mater. 2009, 162(s 2-3): 842-847.
- [4] Hongwei, Q.; Victor, S.; Stasio, A. R. D. RDX-Based Nanocomposite Microparticles for Significantly Reduced Shock Sensitivity. J. Hazard. Mater. 2011, 185(1): 489-493.
- [5] Lee, B. M.; Kim, D. S.; Lee, Y. H. Preparation of Submicron-sized RDX Particles by Rapid Expansion of Solution Using Compressed Liquid Dimethyl Ether. J. Supercrit. Fluids 2011, 57(3): 251-258.
- [6] Li, J.; Brill, T. Nanostructured Energetic Composites of CL-20 and Binders Synthesized by Sol-Gel Methods. Propellants Explos. Pyrotech. 2006, 31(1): 61-69.
- [7] Radacsi, N.; Stankiewicz, A. I.; Creyghton, Y. L. M. Electrospray Crystallization for High-quality Submicron-sized Crystals. Chem. Eng. Technol. 2011, 34(4): 624-630.
- [8] Tapia-Hernández, J. A.; Torres-Chávez, P. I.; Ramírez-Wong, B. Micro- and Nanoparticles by Electrospray: Advances and Applications in Foods. J. Agric. Food Chem. 2015, 63(19): 4699-4707.
- [9] Ju, J.; Yamagata, Y.; Higuchi, T. Thin-film Fabrication Method for Organic Light-emitting Diodes Using Electrospray Deposition. Adv. Mater. 2009, 21(43): 4343-4347.
- [10] Shi, Y.; Guoqiang, J.; Zachariah, M. R. Electrospun Nanofiber Based Thermite Textiles and Their Reactive Properties. ACS Appl. Mater. Interfaces 2012, 4(12): 6432-6435.
- [11] Wang, H.; Jian, G.; Yan, S. Electrospray Formation of Gelled Nano-aluminum Microspheres with Superior Reactivity. ACS Appl. Mater. Interfaces 2013, 5(15): 6797-6801.
- [12] Hwang, W.; Xin, G.; Cho, M. Electrospray Deposition of Polymer Thin Films for Organic Light-Emitting Diodes. Nanoscale Res. Lett. 2012, 7(1): 52.
- [13] Melgar, V. M. A.; Kwon, H. T.; Kim, J. Direct Spraying Approach for Synthesis of ZIF-7 Membranes by Electrospray Deposition. J. Membr. Sci. 2014, 459(2): 190-196.
- [14] Kwon, H. T.; Kim, J.; Park, J. H. Synthesis and Characterization of Porous La1-xSrxCo1-yFeyO3 - Membranes Fabricated Using by Electrostatic Spray Deposition. J. Korean Phys. Soc. 2009, 54(3): 2672-2682.
- [15] Radacsi, N.; Stankiewicz, A. I.; Creyghton, Y. L. M. Electrospray Crystallization for High-Quality Submicron-Sized Crystals. Chem. Eng. Technol. 2011, 34(4): 624-630.
- [16] Radacsi, N.; Ambrus, R.; Szunyogh, T. Electrospray Crystallization for Nanosized Pharmaceuticals with Improved Properties. Cryst. Growth Des. 2012, 12(7): 3514-3520.
- [17] Holtz, E. V.; Ornellas, D.; Foltz, M. F. The Solubility of ε-CL-20 in Selected Materials. Propellants Explos. Pyrotech. 1994, 19(4): 206-212.
- [18] Zellmer, S.; Garnweitner, G.; Breinlinger, T. Hierarchical Structure Formation of Nanoparticulate Spray-dried Composite Aggregates. ACS Nano 2015, 9(11): 10749-10757.
- [19] Sloth, J.; Jørgensen, K.; Bach, P. Spray Drying of Suspensions for Pharma and Bio Products: Drying Kinetics and Morphology. Ind. Eng. Chem. Res. 2009, 48(7): 3657-3664.
- [20] Hartman, R. P. A.; Brunner, D. J.; Camelot, D. M. A. Jet Break-up in Electrohydrodynamic Atomization in the Cone-jet Mode. J. Aerosol Sci. 2000, 31(1): 65-95.
- [21] Rasekh, M.; Young, C.; Roldo, M. Hollow-layered Nanoparticles for Therapeutic Delivery of Peptide Prepared Using Electrospraying. J. Mater. Sci.: Mater. Med. 2015, 26(11): 256.
- [22] Radacsi, N., Stankiewicz, A. I.; Creyghton, Y. L. M.; van der Heijden, A. E. D. M.; ter Horst, J. H. Electrospray Crystallization for High-quality Submicron-sized Crystals. Chem. Eng. Technol. 2011, 34(4): 624-630.
- [23] Nielsen, A. T. Caged Polynitramine Compound. US Patent 5693794, 1997.
- [24] Latypov, N. V.; Wellmar, U.; Goede, P. Synthesis and Scaleup of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane from 2,6,8,12-Tetraacetyl-4,10-dibenzyl-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW, CL-20). Org. Process Res. Dev. 2014, 4(3): 156-158.
- [25] Saderson, A. J. Process for Making 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazatetracyclo-[5.5.0.05,903,11]-dodecane. US Patent 6391130B1, 2002.
- [26] Hamilton, R. S.; Mancini, V.; Nelson, C.; Dressen, S. Y. High Temperature Crystallization of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazatetracyclo- [5.5.0.05,903,11]-dodecane. US Patent 7288648 B2, 2007.
- [27] Talawar, M. B.; Sivabalan, R.; Polke, B. G. Establishment of Process Technology for the Manufacture of Dinitrogen Pentoxide and its Utility for the Synthesis of Most Powerful Explosive of Today − CL-20. J. Hazard. Mater. 2005, 124(s 1-3): 153-164.
- [28] Xu, J.; Tian, Y.; Liu, Y. Polymorphism in Hexanitrohexaazaisowurtzitane Crystallized from Solution. J. Cryst. Growth 2012, 354(1): 13-19.
- [29] Elbeih, A.; Husarova, A.; Zeman, S. Path to ε-HNIW with Reduced Impact Sensitivity. Cent. Eur. J. Energ. Mater. 2011, 8(3): 173-182.
- [30] Urbelis, J. H.; Swift, J. A. Solvent Effects on the Growth Morphology and Phase Purity of CL-20. Cryst. Growth Des. 2014, 14(4): 1642-1649.
- [31] Zhang, P.; Xu, J. J.; Guo, X. Y. Effect of Additives on Polymorphic Transition of ε-CL-20 in Castable Systems. J. Therm. Anal. Calorim. 2014, 117(2): 1001-1008.
- [32] Kissinger, H. E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29(11): 1702-1706.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95b3c3d7-acb6-4272-bb78-e638b358a772