PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effective friction angle of deltaic soils in the Vistula Marshlands

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the results of laboratory tests on soft, normally consolidated soils from the Vistula Marshlands. Samples of high-plasticity organic soils (muds) taken from 3.2–4.0 m and 9.5–10.0 m depth, as well as peat deposit at 14.0 m, are analysed. Presented case study confirms the applicability of the Norwegian Institute of Technology (NTH) method based on Cone Penetration Tests (CPTU) and allows for a conservative estimation of effective friction angle for muds. The plastification angle equal to 14.5° for organic silt, applied in the modified NTH method, fits well the triaxial test (TX) results. Moreover, the dilative-contractive behaviour according to the CPTU soil classification based on the Robertson’s proposal from 2016 corresponds well with volumetric changes observed in the consolidated drained triaxial compression tests. The internal friction angles of the Vistula Marshlands' muds and peats are lower in comparison with the database of similar soft soils.
Słowa kluczowe
Wydawca
Rocznik
Strony
143--150
Opis fizyczny
Bibliogr. 29 poz., tab., rys.
Twórcy
  • Gdańsk University of Technology, Gdańsk, Poland
autor
  • Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland
  • Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland
Bibliografia
  • [1] Ajlouni, M.A. 2000. Geotechnical properties of peat and related engineering problems. Ph.D. thesis, Univ. of Illinois at Urbana-Champaign, Urbana, Ill.
  • [2] ASTM D4767, 2011. Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils. ASTM International, West Conshohocken, PA.
  • [3] ASTM D7181, 2011. Method for Consolidated Drained Triaxial Compression Test for Soils. ASTM International, West Conshohocken, PA.
  • [4] Cheng, X.H., Ngan-Tillard, D.J.M., Den Haan, E.J., 2007. The causes of the high friction angle of Dutch organic soils. Engineering Geology 93, 31–44. https://doi.org/10.1016/j. enggeo.2007.03.009
  • [5] Coutinho, R.Q., Lacerda, W.A., 1989. Strength characteristics of Juturnaiba organic clays. Presented at the 12th International conference on Soil Mechanics and Foundation Engineering, Balkema, Rio de Janeiro, pp. 1731–1734.
  • [6] Dan, G., Sultan, N., Savoye, B. 2007. The 1979 Nice harbor catastrophe revisited: trigger mechanism inferred from Geotechnical measurements and numerical modelling. Marine Geology, 245(1–4): 40–64. doi:10.1016/j.margeo. 2007.06.011.
  • [7] Danziger, F.A.B. 2007. In-situ testing of soft Brazilian soils. Studia Geotechnica et Mechanica, 29(1–2): 5–22.
  • [8] Donaghe, R.T., and Townsend, F.C. 1978. Effects of anisotropic versus isotropic consolidation in consolidated undrained triaxial compression tests of cohesive soils. Geotechnical Testing Journal, 1(4): 173–189. doi:10.1520/GTJ10868J.
  • [9] Hendry, M.T., Sharma, J.S., Martin, C.D., Barbour, S.L., 2012. Effect of fibre content and structure on anisotropic elastic stiffness and shear strength of peat. Canadian Geotechnical Journal 49, 403–415. https://doi.org/10.1139/t2012-003
  • [10] Hight, D.W., Bond, A.J., Legge, J.D., 1992. Characterization of the Bothkennar clay: an overview. Geotechnique 42, 303–347.
  • [11] Krieg, S. 2000. Viskoses Bodenverhalten von Mudden, Seeton und Klei. Veroff. Inst. Boden-u. Felsm., 150.
  • [12] Lambson, M.D., Clare, D.G., Senner, D.W.F., and Semple, R.M. 1993. Investigation and interpretation of Pentre and Tilbrook Grange soil conditions. In Large scale pile tests in clay. Thomas Telford Publishing, London, pp. 134–196.
  • [13] Larsson, R., Westerberg, B., Albing, D., Knutsson, S., and Carlsson, E. 2007. Sulfidjord–geoteknisk klassificering och odranerad skjuvhallfasthet. [Sulphide soil—geotechnical classification and undrained shear strength.] Report No. 69, Swedish Geotechnical Institute, SGI, Linkoping. 135 pp.
  • [14] Larsson, R., 1990. Behaviour of Organic Clay and Gyttja (No. Report vol.38). Swedish Geotechnical Institute.
  • [15] Mayne, P.W. 2007. In-situ test calibrations for evaluating soil parameters. In Characterization & Engineering Properties of Natural Soils, Vol. 3, Proc. Singapore 2006, Taylor & Francis Group, London, pp. 1602–1652.
  • [16] Mesri, G., Ajlouni, M., 2007. Engineering properties of fibrous peats. Journal of Geotechnical and Geoenvironmental Engineering 133, 850–866.
  • [17] Ouyang, Z., & Mayne, P.W. 2017. Effective Friction Angle of Clays and Silts from Piezocone Penetration Tests. Canadian Geotechnical Journal, (ja).
  • [18] Pietrzykowski, P., 2004. Charakterystyka geologiczno-inżynierska eemskich gytii i kredy jeziornej z terenu Warszawy, PhD Thesis. ed. University of Warsaw, Warsaw. (in Polish)
  • [19] Powell, J.J.M., and Lunne, T. 2005. Use of CPTU data in clays/ fine grained soils. Studia Geotechnica et Mechanica, 27(3–4): 29–66.
  • [20] Robertson, P.K., 2016. Cone penetration test (CPT)-based soil behaviour type (SBT) classification system — an update. Canadian Geotechnical Journal 53, 1910–1927.
  • [21] Sandroni, S., Barreto, E., and Leroueil, S. 2015. The Santana Port accident: Could it be a sensitive clay flowslide under the Equator? In Proceedings, GeoQuebec 2015, (68th Canadian Geotechnical Conference), Canadian Geotechnical Society, Ottawa.
  • [22] Shahanguian, S., 1981. Détermination expérimentale des courbes d’état limite de l’argile organique de Cubzac-les-Ponts. Rapport de recherche LCPC, vol. 106.
  • [23] Sultan, N., Voisset, M., Marsset, B., Marsset, T., Cauquil, E., and Colliat, J.L. 2007. Potential role of compressional structures in generating submarine slope failures in the Niger Delta. Marine Geology, 237(3): 169–190. doi:10.1016/j.margeo.2006.11.002.
  • [24] Takemura, J., Watabe, Y., and Tanaka, M. 2006. Characterization of alluvial deposits in Mekong Delta. In Characterisation and Engineering Properties of Natural Soils II, Singapore. Vol. 3, Taylor & Francis Group, London, pp. 1805–1829.
  • [25] Tanaka, H., Locat, J., 1999. A microstructural investigation of Osaka Bay clay: the impact of microfossils on its mechanical behaviour. Canadian Geotechnical Journal 36, 493–508. https://doi.org/10.1139/t99-009
  • [26] Terzaghi, K., Peck, R.B., Mesri, G., 1996. Soil mechanics in engineering practice, Third Edition. ed. John Wiley & Sons, Inc., New York. https://doi.org/10.1139/cgj-2016-0044
  • [27] Tsushima, M., Miyakawa, I., and Iwasaki, T., 1977. Some investigations on shear strength of organic soil. Tsuchi-to-Kiso, J. Soil Mech. Found. Eng., 235, 13–18 (in Japanese).
  • [28] Yamaguchi, H., Ohira, Y., Kogure, K., Mori, S., 1985. Undrained shear characteristics of normally consolidated peat under triaxial compression and extension conditions. Soils and Foundations 25, 1–18.
  • [29] Yasuhara, K., & Takenaka, H., 1977. Physical and mechanical properties 2. Engineering Problems of Organic Soils in Japan, Japanese Society of Soil Mechanics and Foundation Engineering, 35–48.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95a6fcf6-0e68-41d1-8a19-95615339c2ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.