Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The oxynitride coating was fabricated on the surface of Ti6Al4V alloy via double glow plasma alloy technology to enhance the wear resistance. The protective coating is dense and homogeneous and has a multilayer structure (outermost oxygen-rich layer, middle nitrogen-rich layer, innermost nitrogen diffusion layer). The acoustic emission curve suggests that the critical load is 53.1 N, the bonding strength between oxynitride coating and substrate is adequate to the application due to the diffusion layer. The oxynitride coating has a maximum hardness about 1020 HV, which is significant harder than Ti6Al4V alloy (370 HV). Tribological behaviors of oxynitride coating were investigated at three loads. The results indicated that the friction coefficient of oxynitride coating is lower than that of substrate at the same conditions. The wear mechanism of oxynitride coating is mainly fatigue wear, which converts to adhesive wear and fatigue wear with increasing load. The protective layer can decrease the actual contact areas obviously during the wear tests, which attributed to the higher hardness and stability of oxynitride layer.
Wydawca
Czasopismo
Rocznik
Tom
Strony
851--858
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wzory
Twórcy
autor
- Anyang Institute of Technology, School of Mechanical Engineering, West Section of Yellow River Avenue, Anyang 455000, China
- Nanjing University of Aeronautics and Astronautics, School of Materials Science and Technology, 29 General Avenue, Nanjing 211100, China
autor
- Nanjing University of Aeronautics and Astronautics, School of Materials Science and Technology, 29 General Avenue, Nanjing 211100, China
autor
- Nanjing University of Aeronautics and Astronautics, School of Materials Science and Technology, 29 General Avenue, Nanjing 211100, China
- Nanjing Iron and Steel Co. LTD, Special Steel Division, Xiejiadian, Liuhe District, Nanjing 211100, China
autor
- Anyang Institute of Technology, School of Mechanical Engineering, West Section of Yellow River Avenue, Anyang 455000, China
Bibliografia
- [1] Shunyu Liu, Yung C. Shin, Additive manufacturing of Ti6Al4V alloy: A review. Mater. Des. 164, 107552 (2019). DOI: https://doi.org/10.1016/j.matdes.2018.107552
- [2] A. Eakambaram, M. Anthony Xavior, Influence of recast layer on the fatigue life of Ti6Al4V processed by electric discharge machining. Arch. Metall. Mater. 64, 1541-1548 (2019). DOI: 10.24425/amm.2019.130124
- [3] Andrew H. Chern, Peeyush Nandwana, Tao Yuan, Michael M. Kirka, Ryan R. Dehoff, Peter K. Liaw, Chad E. Duty, A review on the fatigue behavior of Ti-6Al-4V fabricated by electron beam melting additive manufacturing. Int. J. Fatigue 119, 173-184 (2019). DOI: https://doi.org/10.1016/j.ijfatigue.2018.09.022
- [4] X. Chen, F.Q. Xie, T.J. Ma, W.Y. Li, X.Q. Wu, Effects of postweld heat treatment on microstructure and mechanical properties of linear friction welded Ti2AlNb alloy. Mater. Des. 94, 45-53 (2016). DOI: http://dx.doi.org/10.1016/j.matdes.2016.01.017
- [5] Peter C. King, Christian Busch, Teresa Kittel-Sherri, Mahnaz Jahedi, Stefan Gulizia, Interface melding in cold spray titanium particle impact. Surf. Coat. Technol. 239, 191-199 (2014). DOI: https://doi.org/10.1016/j.surfcoat.2013.11.039
- [6] O.I. Yaskiv, I.M. Pohrelyuk, V.M. Fedirko, Dong Bok Lee, O.V. Tkachuk, Formation of oxynitrides on titanium alloys by gas diffusion treatment. Thin Solid Films 519 (19), 6508-6514 (2011). DOI: https://doi.org/10.1016/j.tsf.2011.04.219
- [7] W. Pawlak, K.J. Kubiak, B.G. Wendler, T.G. Mathia, Wear resistant multilayer nanocomposite WC1-x/C coating on Ti-6Al-4V titanium alloy. Tribol. Int. 82, 400-406 (2015). DOI: https://doi.org/10.1016/j.triboint.2014.05.030
- [8] H.F. Lu, W.P. Liang, Q. Miao, F. Wang, Z. Ding, J.J. Xia, High-temperature tribological behaviors of a Cr-Si co-alloyed layer on TA15 alloy. Chin. J. Aeronaut. 30 (2), 846-855 (2017). DOI: https://doi.org/10.1016/j.cja.2016.10.020
- [9] I. Pohrelyuk, J. Morgiel, O. Tkachuk, K. Szymkiewicz, Effect of temperature on gas oxynitriding of Ti-6Al-4V alloy. Surf. Coat. Technol. 360, 103-109 (2019). DOI: https://doi.org/10.1016/j.surfcoat.2019.01.015
- [10] A.F. Yetim, F. Yildiz, Y. Vangolu, A. Alsaran, A. Celik, Several plasma diffusion processes for improving wear properties of Ti6Al4V alloy. Wear 267, 2179-2185 (2009). DOI: https://doi.org/10.1016/j.wear.2009.04.005
- [11] Dong Bok Lee, Waheed Ali Abro, Kun Sang Lee, Muhammad Ali Abro, Iryna Pohrelyuk, Oleh Yaskiv, Gas Nitriding and Oxidation of Ti-6Al-4V Alloy. Defect Diffus. Forum 382, 155-159 (2018). DOI: https://doi.org/10.4028/www.scientific.net/DDF.382.155
- [12] G. Cassar, J.C. Avelar-Batista Wilson, S. Banfield, J. Housden, A. Matthews, A. Leyland, Surface modification of Ti-6Al-4V Alloys using triode plasma oxidation treatments. Surf. Coat. Technol. 206 (22), 4553-4561 (2012). DOI: https://doi.org/10.1016/j.surfcoat.2012.05.001
- [13] Jiqiang Wu, Han Liu, Jingcai Li, Xingmei Yang, Jing Hu, Comparative study of plasma oxynitriding and plasma nitriding for AISI 4140 steel. J. Alloys Compd. 680, 642-645 (2016). DOI: https://doi.org/10.1016/j.jallcom.2016.04.172
- [14] Oleh Tkachuk, Iryna N. Pohrelyuk, Roman Proskurnyak, J. Guspiel, E. Beltowska-Lehman, Jerzy Morgiel, Electrochemical Behavior of Ti-6Al-4V Alloy in Ringer’s Solution After Oxynitriding. Mater. Sci. 54 (4), 542-546 (2019). DOI: https://doi.org/10.1007/s11003-019-00215-0
- [15] I. M. Pohrelyuk, Oleh Tkachuk, Roman Proskurnyak, Nataliya Boiko, O. Yu. Kluchivska, R.S. Stoika, Piotr Ozga, Cytocompatibility Evaluation of Ti-6Al-4V Alloy After Gas Oxynitriding. J. Mater. Eng. Perform. 29 (12), 7785-7792 (2020). DOI: https://doi.org/10.1007/s11665-020-05265-z
- [16] Z.G. Yang, W.P. Liang, Y.L. Jia, Q. Miao, Z. Ding, Y. Qi, Corrosion behavior of double-glow plasma copperizing coating on Q235 steel. J. Min. Metall., Sect. B 56, 257-268 (2020). DOI: https://doi.org/10.2298/JMMB190820017Y
- [17] Chen Xiaohu, Zhang Pingze, Wei Dongbo, Ding Feng, Li Fengkun, Wei Xiangfei, Ma Shijian, Preparation and characterization of Cr/CrC multilayer on γ-TiAl alloy by the double glow plasma surface alloying technology. Mater. Lett. 215, 292-295 (2018). DOI: https://doi.org/10.1016/j.matlet.2017.12.104
- [18] S.Y. Cui, Q. Miao, W.P. Liang, B.Q. Li, Oxidation behavior of NiCoCrAlY coatings deposited by Double-Glow plasma alloying. Appl. Surf. Sci. 428, 781-787 (2018). DOI: https://doi.org/10.1016/j.apsusc.2017.09.215
- [19] D.B. Wei, P.Z. Zhang, Z.J. Yao, X.F. Wei, J.T. Tang, X.H. Chen, Preparation and high-temperature oxidation behavior of plasma Cr-Ni alloying on Ti6Al4V alloy based on double glow plasma surface metallurgy technology. Appl. Surf. Sci. 388, 571-578 (2016). DOI: https://doi.org/10.1016/j.apsusc.2015.10.064
- [20] Z.G. Yang, W.P. Liang, Q. Miao, Z. Ding, S.W. Zuo, Tribological behavior of borocarburized layer on low-carbon steel treated by double glow plasma surface alloying. Mater. Res. Express 5, 046408 (2018). DOI: https://doi.org/10.1088/2053-1591/ab9980
- [21] Song Xu, Paul Munroe, Jiang Xu, Zonghan Xie, The microstructure and mechanical properties of tantalum nitride coatings deposited by a plasma assisted bias sputtering deposition process. Surf. Coat. Technol. 307, 470-475 (2016). DOI: https://doi.org/10.1016/j.surfcoat.2016.09.015
- [22] D.B. Wei, H.X. Liang, S.Q. Li, F.K. Li, F. Ding, S.Y. Wang, Z.L. Liu, P.Z. Zhang, Microstructure and tribological behavior of W-Mo alloy coating on powder metallurgy gears based on double glow plasma surface alloying technology. J. Min. Metall., Sect. B 55, 227-234 (2019). DOI: https://doi.org/10.2298/JMMB181031022D
- [23] Y. Xu, W. Liang, Q. Miao, Q. Jiang, B. Ren, Z. Yao, P. Zhang, D. Wei, High temperature oxidation behaviour of Al2O3/Al composite coating on γ-TiAl. Surf. Eng. 31 (5), 354-360 (2015). DOI: http://dx.doi.org/10.1179/1743294414Y.0000000363
Uwagi
This project was supported by the National Natural Science Foundation of China (No. 51874185), the Anyang Science and Technology Planning Project (No. 2022C01GX010), and the Doctoral Fund of Anyang institute of Technology (No. BSJ2022030)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95a3367e-379f-4abb-af87-8852b26bd525
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.