Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The largest biomass in Indonesia is rice straw, where the largest content is cellulose. Cellulose can convert to sorbitol. This sorbitol useful for various industries, such as the industry chemical, textile, cleaning, control dust, packaging, agriculture and materials burnt. In this study, we produced sorbitol from rice straw by using multistage is hydrolysis NaOH continued photonanocatalyst manganese ferrite based (MnZnFe2O4,, MnCuFe2O4 and MnLa-FeO3). The aim is to obtain sorbitol from rice straw with novelty use photonanocatalyst manganese ferrite based (MnZnFe2O4,, MnCuFe2O4 and MnLaFeO3). This study provides results that photonanocatalyst of MnZnFe2O4, MnCuFe2O4 and MnLaFeO3 can used to convert cellulose into sorbitol. Based on the results of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD) and thermo gravimetric analysis (TGA), it shows by using multistage is hydrolysis NaOH continued photonanocatalyst of MnZnFe2O4,, MnCuFe2O4 and MnLaFeO3, sorbitol successfully obtained from rice straw. Conversion cellulose and selectivity optimum on use MnLaFeO3 125 W with an exposure time of 60 minutes, where the results were influenced by the promoter metal, UV light power and exposure time. More UV light power and longer exposure time give higher conversion cellulose and selectivity sorbitol. Order reaction photonanocatalyst reaction conversion cellulose to sorbitol using nano catalyst MnLaFeO3 is 0.4, the value constant reaction photocatalysis (kr) is 1.3014 Lg-1.min-1 and the value Langmuir-Hinshelwood constant (K) is 0.0092 Lg-1. Characterization product sorbitol, the morphology of sorbitol through SEM scan shows that sorbitol is granular. FTIR shows that sorbitol has the following characteristics: group function alcohol (-OH) and alkyl (-CH). XRD reveals that the sorbitol produced is amorphous sorbitol. TGA shows that % heavy experience degradation along with the rise temperature, where sorbitol begins to undergo degradation at a temperature of 200 ⁰C and a maximum at a temperature of 357 ⁰C.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
63--76
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
- Department of Engineering Physics, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia
autor
- Department of Engineering Physics, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia
autor
- Department of Engineering Physics, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia
Bibliografia
- 1. Basu, S., Shivhare, U.S., Singh, T.V. and Beniwal, V.S. (2011). Rheological, textural and spectral characteristics of sorbitol substituted mango jam. Journal of Food Engineering 105(3): 503–12. http://dx.doi.org/10.1016/j.jfoodeng.2011.03.014
- 2. Bhattacharya, D., Germinario, L.T and Winter, W.T. (2008). Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydrate Polymers 73(3): 371–77.
- 3. Chesson, A. (1981). Effects of sodium hydroxide on cereal straws in relation to the enhanced degradation of structural polysaccharides by rumen microorganisms. Journal of the Science of Food and Agriculture 32(8): 745–58.
- 4. Cuevas-Suárez, C.E., Meereis, C.T.W., D’accorso, N., et al. (2019). Effect of radiant exposure and UV Accelerated Aging on Physico-Chemical and Mechanical Properties of Composite Resins Abstract. 1–9.
- 5. Cullity, B.D. and Graham, C.D. (2011). Introduction to magnetic materials. John Wiley & Sons.
- 6. Cumba, R.M.T., Ligalig, C.B., Tingson, J.M.D et al. (2022). Photocatalytic activity of cellulose nanocrystals/zinc oxide nanocomposite against thiazine dye under UV and visible light irradiation. ASEAN Journal of Chemical Engineering 22(1): 168–77.
- 7. DeJong, A.E., and Hartel, R.W. (2021). Modulating sorbitol crystallization using impurities. Journal of Food Engineering 296(July 2020): 110475. https://doi.org/10.1016/j.jfoodeng.2020.110475
- 8. Deshmukh, A.G., Gogte, B.B. and Yenkie, M.N. (2014). Liquid laundry detergents based on polymeric surfactants containing sorbitol, starch and sugar syrup. Der Pharma Chemica 6(6): 143–48.
- 9. Dias, M.C.G.C., Farias, F.O., Gaioto, R.C. et al. (2022). Thermophysical characterization of deep eutectic solvents composed by D-Sorbitol, Xylitol or D(+)Xylose as hydrogen bond donors. Elsevier Journal of Molecular Liquids 354, 118801, 354.
- 10. Du, Y., Ziyu, X.A., Li Z., et al. (2021). Visible-to-ultraviolet light conversion: materials and applications. 2000213.
- 11. Fischer, W.J., Zankel, A, Ganser, C. et al. (2014). Imaging of the formerly bonded area of individual fiber to fiber joints with SEM and AFM. Cellulose 21(1): 251–60.
- 12. Guo, X., Fu, Y., Miao, F. et al. (2020). Efficient separation of functional xylooligosaccharide, cellulose and lignin from poplar via thermal acetic acid/sodium acetate hydrolysis and subsequent kraft pulping. Industrial Crops and Products 153(February): 112575. https://doi.org/10.1016/j.indcrop.2020.112575
- 13. Iervolino, G., Vaiano, V., Sannino, D. et al. (2021). Lafeo3 modified with Ni for hydrogen evolution via photocatalytic glucose reforming in liquid phase. Catalysts 11(12): 1–18.
- 14. Jadhav, S.V., Kim B.M., Lee, H.Y. et al. (2018). Induction heating and in vitro cytotoxicity studies of MnZnFe2O4 nanoparticles for self-controlled magnetic particle hyperthermia. Journal of Alloys and Compounds 745(March): 282–91.
- 15. Jeong, J.H., Song, C.-G., Kim, K.H. et al. (2018). Effect of Mn doping on particulate size and magnetic properties of LaFeO3 nanofiber synthesized by electrospinning. Journal of Alloys and Compounds 749: 599–604. https://doi.org/10.1016/j.jallcom.2018.03.352
- 16. Saroha, J., Mehra, S., Kumar, M. & Sharma, S.N. (2021). Thermo-physical properties of paraffin/TiO2 and sorbitol/TiO2 nanocomposites for enhanced phase change materials: A study on the stability issue. Appl. Phys. A 127, 127: 916.
- 17. Kannapiran, N., Muthusamy, A. and Chitra, P. (2016). Effect of MnCuFe2O4 Content on magnetic and dielectric properties of poly (O-Phenylenediamine)/MnCuFe2O4 Nanocomposites. Journal of Magnetism and Magnetic Materials 401: 345–53.
- 18. Kannapiran, N., Muthusamy, A. and Meena, S.S. (2021). Study of magnetic and electrical properties of poly(o-Phenylenediamine)/manganese substituted ZnFe2O4 nanocomposites. Journal of Inorganic and Organometallic Polymers and Materials 31(8): 3441–59. https://doi.org/10.1007/s10904-021-02020-2
- 19. Khan, M.N. et al. (2020). Environmentally benign extraction of cellulose from Dunchi fiber for nanocellulose fabrication. International Journal of Biological Macromolecules 153: 72–78. https://doi.org/10.1016/j.ijbiomac.2020.02.333
- 20. Khan, T.F., Naresh, U., Ramprasad, T. and Kumar, R.J. (2021). Structural, morphological, and magnetic properties of cobalt-doped nickel ferrite nanoparticles. Journal of Superconductivity and Novel Magnetism 34(3): 797–803.
- 21. Kumari, H. et al. (2023). 234 water, air, and soil pollution a review on photocatalysis used for wastewater treatment: dye degradation. Springer International Publishing. https://doi.org/10.1007/s11270-023-06359-9
- 22. Kunusa, W.R., Isa, I., Laliyo, L.A.R. and Iyabu, H. (2018). FTIR, XRD and SEM Analysis of Microcrystalline Cellulose (MCC) Fibers from Corn Corbs in Alkaline Treatment. Journal of Physics: Conference Series 1028(1).
- 23. Kusnierek, K., Woznicki, T. and Treu, A. (2024). Quality control of wood treated with citric acid and sorbitol using a handheld Raman spectrometer. Journal of Cleaner Production 434(November 2023): 139925. https://doi.org/10.1016/j.jclepro.2023.139925
- 24. Lei, W., Fang, C., Zhou, X. et al. (2018). Cellulose nanocrystals obtained from office waste paper and their potential application in PET packing materials. Carbohydrate Polymers 181: 376–85. http://dx.doi.org/10.1016/j.carbpol.2017.10.059
- 25. Li, L., Sahi, S.K., Penget, M. et al. (2016). Luminescence- and nanoparticle- mediated increase of light absorption by photoreceptor cells: converting UV light to visible light. Nature Publishing Group (March). http://dx.doi.org/10.1038/srep20821
- 26. Londoño-Pulgarin, D., Cardona-Montoya, G., Restrepo, J.C. and Muñoz-Leiva, F. (2021). Fossil or bioenergy? Global fuel market trends. Renewable and Sustainable Energy Reviews 143(October 2019).
- 27. Marushka, J., Hurychová, H., Šklubalová, Z. and Tebbens, J.D. (2022). Flow equations for free-flowable particle fractions of sorbitol for direct compression: An exploratory multiple regression analysis of particle and orifice size influence. Pharmaceutics 14(8).
- 28. Obst, P., Oehlmann, P., Rietzel D., et al. (2019). Investigation of the influence of exposure time on the dual-curing reaction of RPU70 during the DLS process and the resulting part properties.
- 29. Energy Outlook, BPPT. (2021). Center for Process Industry and Energy Research (PPIPE) Agency for the Assessment and Application of Technology (BPPT) Indonesia Energy Outlook 2021 Indonesian Energy Technology Perspective: Solar Power for Charging Station Energy Supply.
- 30. Paudel, S., Regmi, S. and Janaswamy, S. (2023). Effect of glycerol and sorbitol on cellulose-based bio-degradable films. Food Packaging and Shelf Life 37.
- 31. Production, Crop. (2008). Sorbitol Octanoate. 035400: 1–7.
- 32. Raji, R.K., Ramachandran, T., Muralidharan, M. et al. (2021). Twitching the inherent properties: The impact of transition metal Mn-doped on LaFeO3-based perovskite materials. Journal of Materials Science: Materials in Electronics 32(20): 25528–44.
- 33. Ramos, M., Laveriano, E., Sebasti´an, L.S. et al. (2023). Rice straw as a valuable source of cellulose and polyphenols: Applications in the food industry. Trends in Food Science and Technology 131(No-vember 2022): 14–27.
- 34. Rocha, G.J.M., Andrade, L.P., Martín, C. et al. (2020). Simultaneous obtaining of oxidized lignin and cellulosic pulp from steam-exploded sugarcane bagasse. Industrial Crops and Products 147(February): 112227. https://doi.org/10.1016/j.indcrop.2020.112227
- 35. Rumondang, D. (2017). Conversion of Nanocellulose into Sugar Alcohol Using Uv-Irradiated Ni0.9cu0.1fe2o4 Nanocomposites. Nusantara PGRI University Kediri 1: 1–7. http://www.albayan.ae.
- 36. Safitri, M. (2018). Conversion of Corn Cob Waste Cellulose into Sugar Alcohol Using Nanocatalist Ni. 4: 1–97.
- 37. Sasidharan, S. (2017). Sol-Gel Lanthanum Phosphate: A Versatile Ceramic Material for Diverse Functional Applications. (June): 285–312.
- 38. Sianturi, L., Humaidi, S., Sembiring, T. et al. (2024). UV exposure time optimization for enhanced conversion, hardness, and flexural strength in UDMA / TEG-DMA composite resins. Trends in Sciences 21(12): 8603.
- 39. Šimunovi, L., Marić, A.J., Bačić, I. et al. (2024). Applied sciences impact of UV light exposure during printing on thermomechanical properties of 3D-printed polyurethane-based orthodontic aligners.
- 40. Situmeang, R., Tamba, M., Simarmataet, E. et al. (2019). LaCrO3 nano photocatalyst: the effect of calcination temperature on its cellulose conversion activity under UV-Ray irradiation. Advances in Natural Sciences: Nanoscience and Nanotechnology 10(1).
- 41. Sokker, H.H., Halim A.E.S., Aly, A.S. and Hashem, A. (2005). Grafting DMAEMA into fabrics in cellulosic fiber to remove direct dyes cellulosic fabric wastes grafted with DMAEMA for the removal of direct dyes. (February). Adsorption Science & Technology. https://doi.org/10.1260/0263617043026497
- 42. Sravan, T., and Spandana City. (2021). Sorbitol its applications in different fields. Agriculture & Food: E-Newsletter 3(3): 2–4.
- 43. Tahir, M.B. Iqbal, T., Rafique, M. et al. (2020). Nanotechnology and photocatalysis for environmental applications nanomaterials for photocatalysis. Elsevier Inc. https://doi.org/10.1016/B978-0-12-821192-2.00005-X
- 44. Teixeira, E. de M. et al. (2011). Sugarcane bagasse whiskers: Extraction and characterizations. Industrial Crops and Products 33(1): 63–66. http://dx.doi.org/10.1016/j.indcrop.2010.08.009
- 45. Torres-Mayanga, P.C., Lachos-Perez, D., Mudhoo, A. et al. (2019). Production of biofuel precursors and value-added chemicals from hydrolysates resulting from hydrothermal processing of biomass: A review. Biomass and Bioenergy 130(September): 105397. https://doi.org/10.1016/j.biombioe.2019.105397
- 46. Won, J., Hyun, R. and Boo, J.-H. (2022). Enhancement of UV-light harvesting in perovskite solar cells by internal down-conversion with Eu-Complex hole transport layer. Energy Reports 8: 214–22. https://doi.org/10.1016/j.egyr.2022.08.125
- 47. Yu, Y. et al. (2017). UV and visible light photocatalytic activity of Au/TiO2 nanoforests with anatase/rutile phase junctions and controlled au locations. Scientific Reports 7(December 2016): 1–13. http://dx.doi.org/10.1038/srep41253
- 48. Zhang, Y., Zhang, G. and Chen, T. (2023). Efficient one-pot conversion of cellulose to sorbitol over nibased carbon catalysts with embedment structure. Elsevier Fuel 339, 1 May 2023, 127447 339
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95a17714-a17c-4e64-8f86-538ca7a7dc4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.